Properties

Label 2-4368-1.1-c1-0-18
Degree $2$
Conductor $4368$
Sign $1$
Analytic cond. $34.8786$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 1.56·5-s − 7-s + 9-s + 2·11-s − 13-s − 1.56·15-s + 5.12·17-s + 2.43·19-s − 21-s − 4.68·23-s − 2.56·25-s + 27-s − 3.56·29-s − 1.56·31-s + 2·33-s + 1.56·35-s + 1.12·37-s − 39-s + 7.12·41-s + 9.56·43-s − 1.56·45-s + 6.68·47-s + 49-s + 5.12·51-s + 0.438·53-s − 3.12·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.698·5-s − 0.377·7-s + 0.333·9-s + 0.603·11-s − 0.277·13-s − 0.403·15-s + 1.24·17-s + 0.559·19-s − 0.218·21-s − 0.976·23-s − 0.512·25-s + 0.192·27-s − 0.661·29-s − 0.280·31-s + 0.348·33-s + 0.263·35-s + 0.184·37-s − 0.160·39-s + 1.11·41-s + 1.45·43-s − 0.232·45-s + 0.975·47-s + 0.142·49-s + 0.717·51-s + 0.0602·53-s − 0.421·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4368\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(34.8786\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.008011801\)
\(L(\frac12)\) \(\approx\) \(2.008011801\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 1.56T + 5T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 - 5.12T + 17T^{2} \)
19 \( 1 - 2.43T + 19T^{2} \)
23 \( 1 + 4.68T + 23T^{2} \)
29 \( 1 + 3.56T + 29T^{2} \)
31 \( 1 + 1.56T + 31T^{2} \)
37 \( 1 - 1.12T + 37T^{2} \)
41 \( 1 - 7.12T + 41T^{2} \)
43 \( 1 - 9.56T + 43T^{2} \)
47 \( 1 - 6.68T + 47T^{2} \)
53 \( 1 - 0.438T + 53T^{2} \)
59 \( 1 + 5.12T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 13.3T + 67T^{2} \)
71 \( 1 - 2.87T + 71T^{2} \)
73 \( 1 + 5.80T + 73T^{2} \)
79 \( 1 - 11.8T + 79T^{2} \)
83 \( 1 + 9.80T + 83T^{2} \)
89 \( 1 - 5.56T + 89T^{2} \)
97 \( 1 + 7.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.209197905554803173198414239762, −7.63440507596170888808173101697, −7.22429220934273708928997619655, −6.12296435506030564500514203359, −5.52373118515310058780871164410, −4.32082479291631640997077825386, −3.79083645770729656009810710698, −3.06498976679320005147287416152, −2.01780281347619080587613979567, −0.77977158341817037127408942396, 0.77977158341817037127408942396, 2.01780281347619080587613979567, 3.06498976679320005147287416152, 3.79083645770729656009810710698, 4.32082479291631640997077825386, 5.52373118515310058780871164410, 6.12296435506030564500514203359, 7.22429220934273708928997619655, 7.63440507596170888808173101697, 8.209197905554803173198414239762

Graph of the $Z$-function along the critical line