L(s) = 1 | + 3-s − 1.56·5-s − 7-s + 9-s + 2·11-s − 13-s − 1.56·15-s + 5.12·17-s + 2.43·19-s − 21-s − 4.68·23-s − 2.56·25-s + 27-s − 3.56·29-s − 1.56·31-s + 2·33-s + 1.56·35-s + 1.12·37-s − 39-s + 7.12·41-s + 9.56·43-s − 1.56·45-s + 6.68·47-s + 49-s + 5.12·51-s + 0.438·53-s − 3.12·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.698·5-s − 0.377·7-s + 0.333·9-s + 0.603·11-s − 0.277·13-s − 0.403·15-s + 1.24·17-s + 0.559·19-s − 0.218·21-s − 0.976·23-s − 0.512·25-s + 0.192·27-s − 0.661·29-s − 0.280·31-s + 0.348·33-s + 0.263·35-s + 0.184·37-s − 0.160·39-s + 1.11·41-s + 1.45·43-s − 0.232·45-s + 0.975·47-s + 0.142·49-s + 0.717·51-s + 0.0602·53-s − 0.421·55-s + ⋯ |
Λ(s)=(=(4368s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4368s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.008011801 |
L(21) |
≈ |
2.008011801 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1+T |
| 13 | 1+T |
good | 5 | 1+1.56T+5T2 |
| 11 | 1−2T+11T2 |
| 17 | 1−5.12T+17T2 |
| 19 | 1−2.43T+19T2 |
| 23 | 1+4.68T+23T2 |
| 29 | 1+3.56T+29T2 |
| 31 | 1+1.56T+31T2 |
| 37 | 1−1.12T+37T2 |
| 41 | 1−7.12T+41T2 |
| 43 | 1−9.56T+43T2 |
| 47 | 1−6.68T+47T2 |
| 53 | 1−0.438T+53T2 |
| 59 | 1+5.12T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1−13.3T+67T2 |
| 71 | 1−2.87T+71T2 |
| 73 | 1+5.80T+73T2 |
| 79 | 1−11.8T+79T2 |
| 83 | 1+9.80T+83T2 |
| 89 | 1−5.56T+89T2 |
| 97 | 1+7.56T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.209197905554803173198414239762, −7.63440507596170888808173101697, −7.22429220934273708928997619655, −6.12296435506030564500514203359, −5.52373118515310058780871164410, −4.32082479291631640997077825386, −3.79083645770729656009810710698, −3.06498976679320005147287416152, −2.01780281347619080587613979567, −0.77977158341817037127408942396,
0.77977158341817037127408942396, 2.01780281347619080587613979567, 3.06498976679320005147287416152, 3.79083645770729656009810710698, 4.32082479291631640997077825386, 5.52373118515310058780871164410, 6.12296435506030564500514203359, 7.22429220934273708928997619655, 7.63440507596170888808173101697, 8.209197905554803173198414239762