L(s) = 1 | − 2.79·3-s − 0.208·7-s + 4.79·9-s + 11-s + 13-s − 0.791·17-s − 6.58·19-s + 0.582·21-s − 3.79·23-s − 4.99·27-s + 6.79·29-s + 8.58·31-s − 2.79·33-s + 2.58·37-s − 2.79·39-s − 1.41·41-s − 10·43-s − 1.41·47-s − 6.95·49-s + 2.20·51-s − 11.3·53-s + 18.3·57-s + 10.5·59-s + 4.20·61-s − 0.999·63-s − 4·67-s + 10.5·69-s + ⋯ |
L(s) = 1 | − 1.61·3-s − 0.0788·7-s + 1.59·9-s + 0.301·11-s + 0.277·13-s − 0.191·17-s − 1.51·19-s + 0.127·21-s − 0.790·23-s − 0.962·27-s + 1.26·29-s + 1.54·31-s − 0.485·33-s + 0.424·37-s − 0.446·39-s − 0.221·41-s − 1.52·43-s − 0.206·47-s − 0.993·49-s + 0.309·51-s − 1.56·53-s + 2.43·57-s + 1.37·59-s + 0.538·61-s − 0.125·63-s − 0.488·67-s + 1.27·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 + 2.79T + 3T^{2} \) |
| 7 | \( 1 + 0.208T + 7T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 17 | \( 1 + 0.791T + 17T^{2} \) |
| 19 | \( 1 + 6.58T + 19T^{2} \) |
| 23 | \( 1 + 3.79T + 23T^{2} \) |
| 29 | \( 1 - 6.79T + 29T^{2} \) |
| 31 | \( 1 - 8.58T + 31T^{2} \) |
| 37 | \( 1 - 2.58T + 37T^{2} \) |
| 41 | \( 1 + 1.41T + 41T^{2} \) |
| 43 | \( 1 + 10T + 43T^{2} \) |
| 47 | \( 1 + 1.41T + 47T^{2} \) |
| 53 | \( 1 + 11.3T + 53T^{2} \) |
| 59 | \( 1 - 10.5T + 59T^{2} \) |
| 61 | \( 1 - 4.20T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 - 7.79T + 73T^{2} \) |
| 79 | \( 1 - 15.5T + 79T^{2} \) |
| 83 | \( 1 + 9.95T + 83T^{2} \) |
| 89 | \( 1 + 0.791T + 89T^{2} \) |
| 97 | \( 1 - 6.20T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.116667936934512123062690496697, −6.82590778520394867252596398988, −6.44548923331337231817826851587, −6.01496045689777599273323556455, −4.91632919529087544908306014287, −4.55894421730045353922337284346, −3.57513545388900530181467248299, −2.25175248579458075361051496095, −1.10968542505886690747660867104, 0,
1.10968542505886690747660867104, 2.25175248579458075361051496095, 3.57513545388900530181467248299, 4.55894421730045353922337284346, 4.91632919529087544908306014287, 6.01496045689777599273323556455, 6.44548923331337231817826851587, 6.82590778520394867252596398988, 8.116667936934512123062690496697