Properties

Label 4-4400e2-1.1-c1e2-0-22
Degree $4$
Conductor $19360000$
Sign $1$
Analytic cond. $1234.41$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s − 9-s + 2·11-s + 2·13-s − 4·17-s + 8·19-s − 2·21-s + 9·23-s − 2·29-s + 7·31-s + 2·33-s + 11·37-s + 2·39-s + 6·41-s − 6·43-s + 16·47-s + 6·49-s − 4·51-s − 8·53-s + 8·57-s + 5·59-s − 6·61-s + 2·63-s + 15·67-s + 9·69-s + 5·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s − 1/3·9-s + 0.603·11-s + 0.554·13-s − 0.970·17-s + 1.83·19-s − 0.436·21-s + 1.87·23-s − 0.371·29-s + 1.25·31-s + 0.348·33-s + 1.80·37-s + 0.320·39-s + 0.937·41-s − 0.914·43-s + 2.33·47-s + 6/7·49-s − 0.560·51-s − 1.09·53-s + 1.05·57-s + 0.650·59-s − 0.768·61-s + 0.251·63-s + 1.83·67-s + 1.08·69-s + 0.593·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19360000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19360000\)    =    \(2^{8} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1234.41\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19360000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.487637720\)
\(L(\frac12)\) \(\approx\) \(4.487637720\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 - T + 2 T^{2} - p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_4$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$D_{4}$ \( 1 - 9 T + 62 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 2 T + 42 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 7 T + 70 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 11 T + 100 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 6 T + 74 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + 78 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 5 T + 18 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 6 T + 114 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 15 T + 186 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 5 T + 110 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 2 T + 130 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 14 T + 190 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 10 T + 174 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 7 T + 152 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 27 T + 372 T^{2} + 27 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.569294575681776858219842774550, −8.281387559201828740614377237443, −7.75146244408403559912236551496, −7.50716993787751304033219123967, −7.10375252011538161002163025072, −6.69478767901061623965317475304, −6.39089513160018131270292765758, −6.15348180155387446570021420381, −5.44481374385695821500459405959, −5.37944320317922370394141190915, −4.80677791670964600603505839472, −4.30205099804158779536748918872, −3.95161211206438174441005613083, −3.56694046126998976573294062261, −2.94508075298548520732699765524, −2.82462795893967783044342484210, −2.45923839405037145469780008008, −1.66051572810067403879634525651, −0.836455123158833036295590329061, −0.821154470808708518466482035081, 0.821154470808708518466482035081, 0.836455123158833036295590329061, 1.66051572810067403879634525651, 2.45923839405037145469780008008, 2.82462795893967783044342484210, 2.94508075298548520732699765524, 3.56694046126998976573294062261, 3.95161211206438174441005613083, 4.30205099804158779536748918872, 4.80677791670964600603505839472, 5.37944320317922370394141190915, 5.44481374385695821500459405959, 6.15348180155387446570021420381, 6.39089513160018131270292765758, 6.69478767901061623965317475304, 7.10375252011538161002163025072, 7.50716993787751304033219123967, 7.75146244408403559912236551496, 8.281387559201828740614377237443, 8.569294575681776858219842774550

Graph of the $Z$-function along the critical line