Properties

Label 2-4400-5.4-c1-0-54
Degree $2$
Conductor $4400$
Sign $0.894 + 0.447i$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.302i·3-s + 0.697i·7-s + 2.90·9-s − 11-s + 1.60i·13-s − 4.30i·17-s − 19-s − 0.211·21-s − 3.90i·23-s + 1.78i·27-s + 1.69·29-s − 1.60·31-s − 0.302i·33-s − 7.60i·37-s − 0.486·39-s + ⋯
L(s)  = 1  + 0.174i·3-s + 0.263i·7-s + 0.969·9-s − 0.301·11-s + 0.445i·13-s − 1.04i·17-s − 0.229·19-s − 0.0460·21-s − 0.814i·23-s + 0.344i·27-s + 0.315·29-s − 0.288·31-s − 0.0527i·33-s − 1.25i·37-s − 0.0778·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4400} (4049, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.927408012\)
\(L(\frac12)\) \(\approx\) \(1.927408012\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - 0.302iT - 3T^{2} \)
7 \( 1 - 0.697iT - 7T^{2} \)
13 \( 1 - 1.60iT - 13T^{2} \)
17 \( 1 + 4.30iT - 17T^{2} \)
19 \( 1 + T + 19T^{2} \)
23 \( 1 + 3.90iT - 23T^{2} \)
29 \( 1 - 1.69T + 29T^{2} \)
31 \( 1 + 1.60T + 31T^{2} \)
37 \( 1 + 7.60iT - 37T^{2} \)
41 \( 1 - 8.21T + 41T^{2} \)
43 \( 1 + 7.21iT - 43T^{2} \)
47 \( 1 - 5.60iT - 47T^{2} \)
53 \( 1 + 6.51iT - 53T^{2} \)
59 \( 1 + 5.60T + 59T^{2} \)
61 \( 1 - 3.30T + 61T^{2} \)
67 \( 1 - 8iT - 67T^{2} \)
71 \( 1 + 2.60T + 71T^{2} \)
73 \( 1 + 1.90iT - 73T^{2} \)
79 \( 1 - 6.30T + 79T^{2} \)
83 \( 1 + 6.90iT - 83T^{2} \)
89 \( 1 - 5.09T + 89T^{2} \)
97 \( 1 - 7.11iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.344573920033322795387743962885, −7.41920510504514355211102905922, −7.01632203360154801084010968984, −6.11450049089458274239051017693, −5.28328408632907170847424162540, −4.51471558782671196501774358900, −3.89231819570873533968659474575, −2.75194241620424771282725680812, −1.96442615971601037506361401382, −0.64678935939778564069675681632, 0.991850641403497964335931857388, 1.89581907513576909277294624701, 3.01061836199903331082567954369, 3.93310200131760935683869340163, 4.58187941901437908251569839103, 5.52066244859662052465485121896, 6.27857814055068653664936550357, 6.99273201581962014220671146853, 7.77646047716154129824682257465, 8.176175677992336728879487421953

Graph of the $Z$-function along the critical line