Properties

Label 2-4400-5.4-c1-0-23
Degree 22
Conductor 44004400
Sign 0.8940.447i-0.894 - 0.447i
Analytic cond. 35.134135.1341
Root an. cond. 5.927405.92740
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.79i·3-s − 0.208i·7-s − 4.79·9-s + 11-s i·13-s − 0.791i·17-s + 6.58·19-s + 0.582·21-s + 3.79i·23-s − 4.99i·27-s − 6.79·29-s + 8.58·31-s + 2.79i·33-s + 2.58i·37-s + 2.79·39-s + ⋯
L(s)  = 1  + 1.61i·3-s − 0.0788i·7-s − 1.59·9-s + 0.301·11-s − 0.277i·13-s − 0.191i·17-s + 1.51·19-s + 0.127·21-s + 0.790i·23-s − 0.962i·27-s − 1.26·29-s + 1.54·31-s + 0.485i·33-s + 0.424i·37-s + 0.446·39-s + ⋯

Functional equation

Λ(s)=(4400s/2ΓC(s)L(s)=((0.8940.447i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(4400s/2ΓC(s+1/2)L(s)=((0.8940.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 44004400    =    2452112^{4} \cdot 5^{2} \cdot 11
Sign: 0.8940.447i-0.894 - 0.447i
Analytic conductor: 35.134135.1341
Root analytic conductor: 5.927405.92740
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ4400(4049,)\chi_{4400} (4049, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 4400, ( :1/2), 0.8940.447i)(2,\ 4400,\ (\ :1/2),\ -0.894 - 0.447i)

Particular Values

L(1)L(1) \approx 1.6607582331.660758233
L(12)L(\frac12) \approx 1.6607582331.660758233
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
11 1T 1 - T
good3 12.79iT3T2 1 - 2.79iT - 3T^{2}
7 1+0.208iT7T2 1 + 0.208iT - 7T^{2}
13 1+iT13T2 1 + iT - 13T^{2}
17 1+0.791iT17T2 1 + 0.791iT - 17T^{2}
19 16.58T+19T2 1 - 6.58T + 19T^{2}
23 13.79iT23T2 1 - 3.79iT - 23T^{2}
29 1+6.79T+29T2 1 + 6.79T + 29T^{2}
31 18.58T+31T2 1 - 8.58T + 31T^{2}
37 12.58iT37T2 1 - 2.58iT - 37T^{2}
41 1+1.41T+41T2 1 + 1.41T + 41T^{2}
43 110iT43T2 1 - 10iT - 43T^{2}
47 1+1.41iT47T2 1 + 1.41iT - 47T^{2}
53 111.3iT53T2 1 - 11.3iT - 53T^{2}
59 1+10.5T+59T2 1 + 10.5T + 59T^{2}
61 14.20T+61T2 1 - 4.20T + 61T^{2}
67 1+4iT67T2 1 + 4iT - 67T^{2}
71 110.7T+71T2 1 - 10.7T + 71T^{2}
73 1+7.79iT73T2 1 + 7.79iT - 73T^{2}
79 1+15.5T+79T2 1 + 15.5T + 79T^{2}
83 19.95iT83T2 1 - 9.95iT - 83T^{2}
89 10.791T+89T2 1 - 0.791T + 89T^{2}
97 16.20iT97T2 1 - 6.20iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.947076518578473608542777152790, −7.994762833236819241757640961384, −7.37395342545581043961001092118, −6.26812650862192244829221147442, −5.50734546682872376662024379502, −4.91397410411789914065325994907, −4.16248956289390071705329839527, −3.41001153887090481038786686783, −2.77394191210548824842656234159, −1.19396089585866482458430720296, 0.51120410345282507646669023921, 1.47798096105292030401073893233, 2.30370194219875638942630951753, 3.19380512017666953124710520274, 4.23830960898633452174474143019, 5.39339243518740575403218658570, 5.93818089134249958150696063022, 6.89415877206793976574350537666, 7.11252583285465168772017647942, 8.001691636017243026483317449072

Graph of the ZZ-function along the critical line