L(s) = 1 | + 2.79i·3-s − 0.208i·7-s − 4.79·9-s + 11-s − i·13-s − 0.791i·17-s + 6.58·19-s + 0.582·21-s + 3.79i·23-s − 4.99i·27-s − 6.79·29-s + 8.58·31-s + 2.79i·33-s + 2.58i·37-s + 2.79·39-s + ⋯ |
L(s) = 1 | + 1.61i·3-s − 0.0788i·7-s − 1.59·9-s + 0.301·11-s − 0.277i·13-s − 0.191i·17-s + 1.51·19-s + 0.127·21-s + 0.790i·23-s − 0.962i·27-s − 1.26·29-s + 1.54·31-s + 0.485i·33-s + 0.424i·37-s + 0.446·39-s + ⋯ |
Λ(s)=(=(4400s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(4400s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
4400
= 24⋅52⋅11
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
35.1341 |
Root analytic conductor: |
5.92740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4400(4049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4400, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.660758233 |
L(21) |
≈ |
1.660758233 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−T |
good | 3 | 1−2.79iT−3T2 |
| 7 | 1+0.208iT−7T2 |
| 13 | 1+iT−13T2 |
| 17 | 1+0.791iT−17T2 |
| 19 | 1−6.58T+19T2 |
| 23 | 1−3.79iT−23T2 |
| 29 | 1+6.79T+29T2 |
| 31 | 1−8.58T+31T2 |
| 37 | 1−2.58iT−37T2 |
| 41 | 1+1.41T+41T2 |
| 43 | 1−10iT−43T2 |
| 47 | 1+1.41iT−47T2 |
| 53 | 1−11.3iT−53T2 |
| 59 | 1+10.5T+59T2 |
| 61 | 1−4.20T+61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1−10.7T+71T2 |
| 73 | 1+7.79iT−73T2 |
| 79 | 1+15.5T+79T2 |
| 83 | 1−9.95iT−83T2 |
| 89 | 1−0.791T+89T2 |
| 97 | 1−6.20iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.947076518578473608542777152790, −7.994762833236819241757640961384, −7.37395342545581043961001092118, −6.26812650862192244829221147442, −5.50734546682872376662024379502, −4.91397410411789914065325994907, −4.16248956289390071705329839527, −3.41001153887090481038786686783, −2.77394191210548824842656234159, −1.19396089585866482458430720296,
0.51120410345282507646669023921, 1.47798096105292030401073893233, 2.30370194219875638942630951753, 3.19380512017666953124710520274, 4.23830960898633452174474143019, 5.39339243518740575403218658570, 5.93818089134249958150696063022, 6.89415877206793976574350537666, 7.11252583285465168772017647942, 8.001691636017243026483317449072