L(s) = 1 | + 2.79i·3-s − 0.208i·7-s − 4.79·9-s + 11-s − i·13-s − 0.791i·17-s + 6.58·19-s + 0.582·21-s + 3.79i·23-s − 4.99i·27-s − 6.79·29-s + 8.58·31-s + 2.79i·33-s + 2.58i·37-s + 2.79·39-s + ⋯ |
L(s) = 1 | + 1.61i·3-s − 0.0788i·7-s − 1.59·9-s + 0.301·11-s − 0.277i·13-s − 0.191i·17-s + 1.51·19-s + 0.127·21-s + 0.790i·23-s − 0.962i·27-s − 1.26·29-s + 1.54·31-s + 0.485i·33-s + 0.424i·37-s + 0.446·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.660758233\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.660758233\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 - 2.79iT - 3T^{2} \) |
| 7 | \( 1 + 0.208iT - 7T^{2} \) |
| 13 | \( 1 + iT - 13T^{2} \) |
| 17 | \( 1 + 0.791iT - 17T^{2} \) |
| 19 | \( 1 - 6.58T + 19T^{2} \) |
| 23 | \( 1 - 3.79iT - 23T^{2} \) |
| 29 | \( 1 + 6.79T + 29T^{2} \) |
| 31 | \( 1 - 8.58T + 31T^{2} \) |
| 37 | \( 1 - 2.58iT - 37T^{2} \) |
| 41 | \( 1 + 1.41T + 41T^{2} \) |
| 43 | \( 1 - 10iT - 43T^{2} \) |
| 47 | \( 1 + 1.41iT - 47T^{2} \) |
| 53 | \( 1 - 11.3iT - 53T^{2} \) |
| 59 | \( 1 + 10.5T + 59T^{2} \) |
| 61 | \( 1 - 4.20T + 61T^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 + 7.79iT - 73T^{2} \) |
| 79 | \( 1 + 15.5T + 79T^{2} \) |
| 83 | \( 1 - 9.95iT - 83T^{2} \) |
| 89 | \( 1 - 0.791T + 89T^{2} \) |
| 97 | \( 1 - 6.20iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.947076518578473608542777152790, −7.994762833236819241757640961384, −7.37395342545581043961001092118, −6.26812650862192244829221147442, −5.50734546682872376662024379502, −4.91397410411789914065325994907, −4.16248956289390071705329839527, −3.41001153887090481038786686783, −2.77394191210548824842656234159, −1.19396089585866482458430720296,
0.51120410345282507646669023921, 1.47798096105292030401073893233, 2.30370194219875638942630951753, 3.19380512017666953124710520274, 4.23830960898633452174474143019, 5.39339243518740575403218658570, 5.93818089134249958150696063022, 6.89415877206793976574350537666, 7.11252583285465168772017647942, 8.001691636017243026483317449072