L(s) = 1 | + (−1.56 + 1.06i)2-s + (0.582 − 1.48i)4-s + (−1.18 − 0.366i)5-s + (2.57 + 0.588i)7-s + (−0.171 − 0.749i)8-s + (2.25 − 0.694i)10-s + (−0.0362 − 0.484i)11-s + (−5.34 − 2.57i)13-s + (−4.66 + 1.83i)14-s + (3.40 + 3.16i)16-s + (−6.06 − 0.913i)17-s + (2.70 − 4.68i)19-s + (−1.23 + 1.54i)20-s + (0.573 + 0.719i)22-s + (8.59 − 1.29i)23-s + ⋯ |
L(s) = 1 | + (−1.10 + 0.755i)2-s + (0.291 − 0.742i)4-s + (−0.530 − 0.163i)5-s + (0.974 + 0.222i)7-s + (−0.0604 − 0.264i)8-s + (0.711 − 0.219i)10-s + (−0.0109 − 0.145i)11-s + (−1.48 − 0.713i)13-s + (−1.24 + 0.489i)14-s + (0.851 + 0.790i)16-s + (−1.47 − 0.221i)17-s + (0.620 − 1.07i)19-s + (−0.276 + 0.346i)20-s + (0.122 + 0.153i)22-s + (1.79 − 0.270i)23-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.775+0.631i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.775+0.631i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.775+0.631i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.775+0.631i)
|
Particular Values
L(1) |
≈ |
0.508197−0.180879i |
L(21) |
≈ |
0.508197−0.180879i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−2.57−0.588i)T |
good | 2 | 1+(1.56−1.06i)T+(0.730−1.86i)T2 |
| 5 | 1+(1.18+0.366i)T+(4.13+2.81i)T2 |
| 11 | 1+(0.0362+0.484i)T+(−10.8+1.63i)T2 |
| 13 | 1+(5.34+2.57i)T+(8.10+10.1i)T2 |
| 17 | 1+(6.06+0.913i)T+(16.2+5.01i)T2 |
| 19 | 1+(−2.70+4.68i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−8.59+1.29i)T+(21.9−6.77i)T2 |
| 29 | 1+(−2.95+3.70i)T+(−6.45−28.2i)T2 |
| 31 | 1+(1.02+1.76i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.441+1.12i)T+(−27.1+25.1i)T2 |
| 41 | 1+(−1.59−6.97i)T+(−36.9+17.7i)T2 |
| 43 | 1+(−1.29+5.65i)T+(−38.7−18.6i)T2 |
| 47 | 1+(−5.58+3.80i)T+(17.1−43.7i)T2 |
| 53 | 1+(−4.63+11.8i)T+(−38.8−36.0i)T2 |
| 59 | 1+(0.334−0.103i)T+(48.7−33.2i)T2 |
| 61 | 1+(0.0327+0.0833i)T+(−44.7+41.4i)T2 |
| 67 | 1+(−0.180−0.313i)T+(−33.5+58.0i)T2 |
| 71 | 1+(4.46+5.60i)T+(−15.7+69.2i)T2 |
| 73 | 1+(−0.740−0.504i)T+(26.6+67.9i)T2 |
| 79 | 1+(6.89−11.9i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.54−2.18i)T+(51.7−64.8i)T2 |
| 89 | 1+(−0.904+12.0i)T+(−88.0−13.2i)T2 |
| 97 | 1+4.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93463460383769921859270706356, −9.849152814544649821619407217425, −8.965518008065482516289230654505, −8.312565819629730050940287715703, −7.43550059753246781816658843197, −6.85450193293565967801943420330, −5.33416000179687644447770558809, −4.42400271880437435975619695095, −2.58500292114210792836752950908, −0.51341054840364928408003438351,
1.47311442655028465939390290369, 2.68348595120719367972860736258, 4.30424225625482042390513328143, 5.30762556817920219013045609196, 7.11520549966611653395064652359, 7.65921339528569372954036766310, 8.758867558454854532283863306787, 9.365920866040855493588653637900, 10.45101379651254681900346524035, 11.07439982787982432744669360381