L(s) = 1 | + (0.439 − 0.761i)2-s + (−1.11 − 1.32i)3-s + (0.613 + 1.06i)4-s + 1.34·5-s + (−1.5 + 0.264i)6-s + 2.83·8-s + (−0.520 + 2.95i)9-s + (0.592 − 1.02i)10-s + 1.65·11-s + (0.726 − 1.99i)12-s + (1.68 − 2.91i)13-s + (−1.5 − 1.78i)15-s + (0.0209 − 0.0362i)16-s + (−0.233 + 0.405i)17-s + (2.02 + 1.69i)18-s + (1.61 + 2.79i)19-s + ⋯ |
L(s) = 1 | + (0.310 − 0.538i)2-s + (−0.642 − 0.766i)3-s + (0.306 + 0.531i)4-s + 0.602·5-s + (−0.612 + 0.107i)6-s + 1.00·8-s + (−0.173 + 0.984i)9-s + (0.187 − 0.324i)10-s + 0.498·11-s + (0.209 − 0.576i)12-s + (0.467 − 0.809i)13-s + (−0.387 − 0.461i)15-s + (0.00523 − 0.00906i)16-s + (−0.0567 + 0.0982i)17-s + (0.476 + 0.399i)18-s + (0.370 + 0.641i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.605+0.795i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.605+0.795i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.605+0.795i)
|
Particular Values
L(1) |
≈ |
1.54687−0.766828i |
L(21) |
≈ |
1.54687−0.766828i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.11+1.32i)T |
| 7 | 1 |
good | 2 | 1+(−0.439+0.761i)T+(−1−1.73i)T2 |
| 5 | 1−1.34T+5T2 |
| 11 | 1−1.65T+11T2 |
| 13 | 1+(−1.68+2.91i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.233−0.405i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.61−2.79i)T+(−9.5+16.4i)T2 |
| 23 | 1−8.94T+23T2 |
| 29 | 1+(3.13+5.42i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4.61+7.99i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4.61+7.99i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.70−2.95i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.20−3.82i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4.67−8.10i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.286+0.497i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−5.19−9.00i)T+(−29.5+51.0i)T2 |
| 61 | 1+(3.81−6.61i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.298+0.516i)T+(−33.5+58.0i)T2 |
| 71 | 1+0.554T+71T2 |
| 73 | 1+(1.02−1.77i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.20+2.08i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−7.52−13.0i)T+(−41.5+71.8i)T2 |
| 89 | 1+(4.54+7.86i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.949−1.64i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20483320511531534068090446810, −10.47206367295542940216042914310, −9.281272626305013244012971528598, −7.980938120989918386908790374740, −7.31625391447585698542672386689, −6.20360106806608713046304893021, −5.38436388529616352901938425534, −3.95165543361171249301758955541, −2.61316087231832447365979469722, −1.40000977447550774505957249211,
1.50792248904301098063192232970, 3.50526435110638626345219114257, 4.92223315931463880684090212539, 5.38230812697238564514380319898, 6.61834785531629225917214233497, 6.94858058933185393775940421850, 8.853756626599044319479436465524, 9.462992366450406661789618286963, 10.48549682056247329527793168971, 11.09418933271149358609166866000