L(s) = 1 | + (−1.26 − 2.19i)2-s + (1.70 + 0.300i)3-s + (−2.20 + 3.82i)4-s − 0.879·5-s + (−1.5 − 4.12i)6-s + 6.10·8-s + (2.81 + 1.02i)9-s + (1.11 + 1.92i)10-s + 3.87·11-s + (−4.91 + 5.85i)12-s + (2.72 + 4.72i)13-s + (−1.49 − 0.264i)15-s + (−3.31 − 5.74i)16-s + (−0.826 − 1.43i)17-s + (−1.31 − 7.48i)18-s + (−1.20 + 2.08i)19-s + ⋯ |
L(s) = 1 | + (−0.895 − 1.55i)2-s + (0.984 + 0.173i)3-s + (−1.10 + 1.91i)4-s − 0.393·5-s + (−0.612 − 1.68i)6-s + 2.15·8-s + (0.939 + 0.342i)9-s + (0.352 + 0.609i)10-s + 1.16·11-s + (−1.41 + 1.68i)12-s + (0.756 + 1.30i)13-s + (−0.387 − 0.0682i)15-s + (−0.829 − 1.43i)16-s + (−0.200 − 0.347i)17-s + (−0.310 − 1.76i)18-s + (−0.276 + 0.479i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.386+0.922i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.386+0.922i)
|
Particular Values
L(1) |
≈ |
0.989132−0.657953i |
L(21) |
≈ |
0.989132−0.657953i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.70−0.300i)T |
| 7 | 1 |
good | 2 | 1+(1.26+2.19i)T+(−1+1.73i)T2 |
| 5 | 1+0.879T+5T2 |
| 11 | 1−3.87T+11T2 |
| 13 | 1+(−2.72−4.72i)T+(−6.5+11.2i)T2 |
| 17 | 1+(0.826+1.43i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.20−2.08i)T+(−9.5−16.4i)T2 |
| 23 | 1−3.16T+23T2 |
| 29 | 1+(−3.02+5.23i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−2.27+3.94i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−2.27+3.94i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.592−1.02i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.0923−0.160i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.511−0.885i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3.64+6.31i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.33−5.76i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.29−2.24i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.47+2.56i)T+(−33.5−58.0i)T2 |
| 71 | 1+3.68T+71T2 |
| 73 | 1+(−6.39−11.0i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−2.97−5.15i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.109+0.189i)T+(−41.5−71.8i)T2 |
| 89 | 1+(5.51−9.54i)T+(−44.5−77.0i)T2 |
| 97 | 1+(6.25−10.8i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02254309381365829901519717328, −9.820870921977605294554954910621, −9.330609183293253550038182261347, −8.607515851812954866572052428020, −7.83498905910377932038268695488, −6.60632671970344356580981990757, −4.19676205139258560891287878343, −3.86459180547307648357347082800, −2.50513848106726247676398584109, −1.38781723698542096110292637509,
1.16988591322485282112455651317, 3.36873537750804530837581543237, 4.70079234571926891255859011501, 6.11140711525917726190799891190, 6.86244500321361413650105875695, 7.75330638895902582505778299944, 8.492564635350077131706833314733, 9.004378846444553257152230690407, 9.942660681219486117946263306610, 10.88919837462206476515977179858