L(s) = 1 | + (−0.119 + 0.207i)2-s + (−0.578 − 1.63i)3-s + (0.971 + 1.68i)4-s − 2.59·5-s + (0.407 + 0.0753i)6-s − 0.942·8-s + (−2.33 + 1.88i)9-s + (0.309 − 0.536i)10-s + 4.18·11-s + (2.18 − 2.55i)12-s + (−1.84 + 3.18i)13-s + (1.5 + 4.23i)15-s + (−1.83 + 3.16i)16-s + (−0.855 + 1.48i)17-s + (−0.112 − 0.708i)18-s + (3.57 + 6.19i)19-s + ⋯ |
L(s) = 1 | + (−0.0845 + 0.146i)2-s + (−0.334 − 0.942i)3-s + (0.485 + 0.841i)4-s − 1.15·5-s + (0.166 + 0.0307i)6-s − 0.333·8-s + (−0.776 + 0.629i)9-s + (0.0979 − 0.169i)10-s + 1.26·11-s + (0.630 − 0.738i)12-s + (−0.510 + 0.884i)13-s + (0.387 + 1.09i)15-s + (−0.457 + 0.792i)16-s + (−0.207 + 0.359i)17-s + (−0.0265 − 0.166i)18-s + (0.820 + 1.42i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.0644−0.997i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.0644−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.0644−0.997i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.0644−0.997i)
|
Particular Values
L(1) |
≈ |
0.606799+0.568857i |
L(21) |
≈ |
0.606799+0.568857i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.578+1.63i)T |
| 7 | 1 |
good | 2 | 1+(0.119−0.207i)T+(−1−1.73i)T2 |
| 5 | 1+2.59T+5T2 |
| 11 | 1−4.18T+11T2 |
| 13 | 1+(1.84−3.18i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.855−1.48i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.57−6.19i)T+(−9.5+16.4i)T2 |
| 23 | 1+5.12T+23T2 |
| 29 | 1+(−1.06−1.84i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−3.26−5.66i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.830+1.43i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−5.10+8.84i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.830−1.43i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4.66−8.08i)T+(−23.5−40.7i)T2 |
| 53 | 1+(5.32−9.22i)T+(−26.5−45.8i)T2 |
| 59 | 1+(3.03+5.25i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.99+6.91i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.13+7.15i)T+(−33.5+58.0i)T2 |
| 71 | 1−6.23T+71T2 |
| 73 | 1+(3.57−6.19i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−4.91+8.51i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.44+5.97i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−2.51−4.36i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.53+2.65i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70480679064857244086457987392, −10.84174506107433101473124412616, −9.274798424537211570069562400597, −8.220365144850365074693957696089, −7.66017402647434378136957482754, −6.85342791521473604959348581628, −6.07522257297866300903922257496, −4.32176914452828040478614350223, −3.37275197335692125292191043693, −1.74566544168349118372809125927,
0.56352934482931732821145294547, 2.85477615780255834684628357904, 4.08139871661966041964412482614, 5.01020561084670447522089781971, 6.11796399434232449266824807800, 7.09407373770462777620943728789, 8.275902012548167300613256031028, 9.468169834503790365724301997175, 9.934639573078498773682551843855, 11.08935336682695214667288315191