L(s) = 1 | − 0.239·2-s + (−1.09 + 1.34i)3-s − 1.94·4-s + (−0.590 − 1.02i)5-s + (0.260 − 0.321i)6-s + 0.942·8-s + (−0.619 − 2.93i)9-s + (0.141 + 0.244i)10-s + (1.85 − 3.20i)11-s + (2.11 − 2.61i)12-s + (−0.5 + 0.866i)13-s + (2.02 + 0.321i)15-s + 3.66·16-s + (3.47 + 6.01i)17-s + (0.148 + 0.701i)18-s + (−0.971 + 1.68i)19-s + ⋯ |
L(s) = 1 | − 0.169·2-s + (−0.629 + 0.776i)3-s − 0.971·4-s + (−0.264 − 0.457i)5-s + (0.106 − 0.131i)6-s + 0.333·8-s + (−0.206 − 0.978i)9-s + (0.0446 + 0.0774i)10-s + (0.558 − 0.967i)11-s + (0.611 − 0.754i)12-s + (−0.138 + 0.240i)13-s + (0.522 + 0.0830i)15-s + 0.915·16-s + (0.841 + 1.45i)17-s + (0.0349 + 0.165i)18-s + (−0.222 + 0.385i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.253i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.967 - 0.253i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.778533 + 0.100120i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.778533 + 0.100120i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.09 - 1.34i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.239T + 2T^{2} \) |
| 5 | \( 1 + (0.590 + 1.02i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.85 + 3.20i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.47 - 6.01i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.971 - 1.68i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.80 - 4.85i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.119 + 0.207i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.66T + 31T^{2} \) |
| 37 | \( 1 + (-4.77 + 8.26i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.09 + 8.81i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.11 + 1.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.82T + 47T^{2} \) |
| 53 | \( 1 + (-5.80 - 10.0i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 2.60T + 59T^{2} \) |
| 61 | \( 1 + 7.60T + 61T^{2} \) |
| 67 | \( 1 - 3.50T + 67T^{2} \) |
| 71 | \( 1 - 8.60T + 71T^{2} \) |
| 73 | \( 1 + (7.57 + 13.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 7.37T + 79T^{2} \) |
| 83 | \( 1 + (-3.47 - 6.01i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.37 - 2.37i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.58 + 6.20i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94266160791660416265082022273, −10.30586044569088187745141121607, −9.221268573517451807790188355853, −8.769832325721090714390667979125, −7.71834117838168719293670627051, −6.08691504350663686541410982176, −5.43017540144501146058442154720, −4.21143269761757994171133612556, −3.63849217342501234715875153699, −0.891407145659966308056892614784,
0.948980920962569836788598051200, 2.83732570488504292474643333126, 4.50142330143137551517289606004, 5.23659024610299446090665615220, 6.60214917456059950221503665626, 7.35019497075926602000642090743, 8.206437095890359720485972128864, 9.375297502175271972132626008563, 10.13068542863295008524292564106, 11.19588906799989752327387152468