L(s) = 1 | − 0.239·2-s + (−1.09 + 1.34i)3-s − 1.94·4-s + (−0.590 − 1.02i)5-s + (0.260 − 0.321i)6-s + 0.942·8-s + (−0.619 − 2.93i)9-s + (0.141 + 0.244i)10-s + (1.85 − 3.20i)11-s + (2.11 − 2.61i)12-s + (−0.5 + 0.866i)13-s + (2.02 + 0.321i)15-s + 3.66·16-s + (3.47 + 6.01i)17-s + (0.148 + 0.701i)18-s + (−0.971 + 1.68i)19-s + ⋯ |
L(s) = 1 | − 0.169·2-s + (−0.629 + 0.776i)3-s − 0.971·4-s + (−0.264 − 0.457i)5-s + (0.106 − 0.131i)6-s + 0.333·8-s + (−0.206 − 0.978i)9-s + (0.0446 + 0.0774i)10-s + (0.558 − 0.967i)11-s + (0.611 − 0.754i)12-s + (−0.138 + 0.240i)13-s + (0.522 + 0.0830i)15-s + 0.915·16-s + (0.841 + 1.45i)17-s + (0.0349 + 0.165i)18-s + (−0.222 + 0.385i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.967−0.253i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.967−0.253i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.967−0.253i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.967−0.253i)
|
Particular Values
L(1) |
≈ |
0.778533+0.100120i |
L(21) |
≈ |
0.778533+0.100120i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.09−1.34i)T |
| 7 | 1 |
good | 2 | 1+0.239T+2T2 |
| 5 | 1+(0.590+1.02i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.85+3.20i)T+(−5.5−9.52i)T2 |
| 13 | 1+(0.5−0.866i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−3.47−6.01i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.971−1.68i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.80−4.85i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.119+0.207i)T+(−14.5+25.1i)T2 |
| 31 | 1−1.66T+31T2 |
| 37 | 1+(−4.77+8.26i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−5.09+8.81i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.11+1.92i)T+(−21.5+37.2i)T2 |
| 47 | 1−5.82T+47T2 |
| 53 | 1+(−5.80−10.0i)T+(−26.5+45.8i)T2 |
| 59 | 1−2.60T+59T2 |
| 61 | 1+7.60T+61T2 |
| 67 | 1−3.50T+67T2 |
| 71 | 1−8.60T+71T2 |
| 73 | 1+(7.57+13.1i)T+(−36.5+63.2i)T2 |
| 79 | 1−7.37T+79T2 |
| 83 | 1+(−3.47−6.01i)T+(−41.5+71.8i)T2 |
| 89 | 1+(1.37−2.37i)T+(−44.5−77.0i)T2 |
| 97 | 1+(3.58+6.20i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94266160791660416265082022273, −10.30586044569088187745141121607, −9.221268573517451807790188355853, −8.769832325721090714390667979125, −7.71834117838168719293670627051, −6.08691504350663686541410982176, −5.43017540144501146058442154720, −4.21143269761757994171133612556, −3.63849217342501234715875153699, −0.891407145659966308056892614784,
0.948980920962569836788598051200, 2.83732570488504292474643333126, 4.50142330143137551517289606004, 5.23659024610299446090665615220, 6.60214917456059950221503665626, 7.35019497075926602000642090743, 8.206437095890359720485972128864, 9.375297502175271972132626008563, 10.13068542863295008524292564106, 11.19588906799989752327387152468