L(s) = 1 | − 2.71·2-s + (−1.16 − 1.27i)3-s + 5.37·4-s + (−0.793 + 1.37i)5-s + (3.17 + 3.46i)6-s − 9.15·8-s + (−0.264 + 2.98i)9-s + (2.15 − 3.73i)10-s + (0.674 + 1.16i)11-s + (−6.28 − 6.86i)12-s + (−1.58 − 2.75i)13-s + (2.68 − 0.593i)15-s + 14.1·16-s + (1.40 − 2.42i)17-s + (0.717 − 8.11i)18-s + (0.312 + 0.541i)19-s + ⋯ |
L(s) = 1 | − 1.91·2-s + (−0.675 − 0.737i)3-s + 2.68·4-s + (−0.354 + 0.614i)5-s + (1.29 + 1.41i)6-s − 3.23·8-s + (−0.0880 + 0.996i)9-s + (0.681 − 1.17i)10-s + (0.203 + 0.352i)11-s + (−1.81 − 1.98i)12-s + (−0.440 − 0.763i)13-s + (0.692 − 0.153i)15-s + 3.52·16-s + (0.339 − 0.588i)17-s + (0.169 − 1.91i)18-s + (0.0717 + 0.124i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0206598 - 0.122739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0206598 - 0.122739i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.16 + 1.27i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 2.71T + 2T^{2} \) |
| 5 | \( 1 + (0.793 - 1.37i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.674 - 1.16i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.58 + 2.75i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.40 + 2.42i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.312 - 0.541i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.142 + 0.246i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.27 + 3.93i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.43T + 31T^{2} \) |
| 37 | \( 1 + (4.01 + 6.94i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (5.01 + 8.68i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.12 - 5.42i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 11.1T + 47T^{2} \) |
| 53 | \( 1 + (1.39 - 2.41i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 4.57T + 59T^{2} \) |
| 61 | \( 1 - 0.385T + 61T^{2} \) |
| 67 | \( 1 + 2.53T + 67T^{2} \) |
| 71 | \( 1 + 1.45T + 71T^{2} \) |
| 73 | \( 1 + (0.234 - 0.405i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 15.7T + 79T^{2} \) |
| 83 | \( 1 + (-6.99 + 12.1i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.29 + 2.24i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.22 - 12.5i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61681274283055071188693325557, −9.936927129410327810169976795345, −8.867760415760188118386575030581, −7.75605673252296508388075475765, −7.34093886465864239640052753175, −6.56042036544171933119319256002, −5.43815568568833874331187228045, −3.03197426835612038589858940981, −1.75028749065787570011280460888, −0.16284889465615840253086987846,
1.43162869545379882977072271589, 3.35292805188748226509633989840, 4.94036915453299441992987875694, 6.25796755457878818196564039801, 7.03796627074153640747916038236, 8.299447030611707471315889221533, 8.861746629986732417420681961995, 9.733288851872664478742081206699, 10.37118736000755067139151583659, 11.31018017509795964472516880664