L(s) = 1 | − 2.71·2-s + (−1.16 − 1.27i)3-s + 5.37·4-s + (−0.793 + 1.37i)5-s + (3.17 + 3.46i)6-s − 9.15·8-s + (−0.264 + 2.98i)9-s + (2.15 − 3.73i)10-s + (0.674 + 1.16i)11-s + (−6.28 − 6.86i)12-s + (−1.58 − 2.75i)13-s + (2.68 − 0.593i)15-s + 14.1·16-s + (1.40 − 2.42i)17-s + (0.717 − 8.11i)18-s + (0.312 + 0.541i)19-s + ⋯ |
L(s) = 1 | − 1.91·2-s + (−0.675 − 0.737i)3-s + 2.68·4-s + (−0.354 + 0.614i)5-s + (1.29 + 1.41i)6-s − 3.23·8-s + (−0.0880 + 0.996i)9-s + (0.681 − 1.17i)10-s + (0.203 + 0.352i)11-s + (−1.81 − 1.98i)12-s + (−0.440 − 0.763i)13-s + (0.692 − 0.153i)15-s + 3.52·16-s + (0.339 − 0.588i)17-s + (0.169 − 1.91i)18-s + (0.0717 + 0.124i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.944+0.327i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(−0.944+0.327i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.944+0.327i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(214,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), −0.944+0.327i)
|
Particular Values
L(1) |
≈ |
0.0206598−0.122739i |
L(21) |
≈ |
0.0206598−0.122739i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.16+1.27i)T |
| 7 | 1 |
good | 2 | 1+2.71T+2T2 |
| 5 | 1+(0.793−1.37i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.674−1.16i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.58+2.75i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1.40+2.42i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.312−0.541i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.142+0.246i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.27+3.93i)T+(−14.5−25.1i)T2 |
| 31 | 1+7.43T+31T2 |
| 37 | 1+(4.01+6.94i)T+(−18.5+32.0i)T2 |
| 41 | 1+(5.01+8.68i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.12−5.42i)T+(−21.5−37.2i)T2 |
| 47 | 1+11.1T+47T2 |
| 53 | 1+(1.39−2.41i)T+(−26.5−45.8i)T2 |
| 59 | 1+4.57T+59T2 |
| 61 | 1−0.385T+61T2 |
| 67 | 1+2.53T+67T2 |
| 71 | 1+1.45T+71T2 |
| 73 | 1+(0.234−0.405i)T+(−36.5−63.2i)T2 |
| 79 | 1+15.7T+79T2 |
| 83 | 1+(−6.99+12.1i)T+(−41.5−71.8i)T2 |
| 89 | 1+(1.29+2.24i)T+(−44.5+77.0i)T2 |
| 97 | 1+(7.22−12.5i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61681274283055071188693325557, −9.936927129410327810169976795345, −8.867760415760188118386575030581, −7.75605673252296508388075475765, −7.34093886465864239640052753175, −6.56042036544171933119319256002, −5.43815568568833874331187228045, −3.03197426835612038589858940981, −1.75028749065787570011280460888, −0.16284889465615840253086987846,
1.43162869545379882977072271589, 3.35292805188748226509633989840, 4.94036915453299441992987875694, 6.25796755457878818196564039801, 7.03796627074153640747916038236, 8.299447030611707471315889221533, 8.861746629986732417420681961995, 9.733288851872664478742081206699, 10.37118736000755067139151583659, 11.31018017509795964472516880664