L(s) = 1 | − 1.72·2-s + (−1.70 + 0.276i)3-s + 0.981·4-s + (−1.75 + 3.04i)5-s + (2.95 − 0.477i)6-s + 1.75·8-s + (2.84 − 0.946i)9-s + (3.03 − 5.25i)10-s + (3.04 + 5.27i)11-s + (−1.67 + 0.271i)12-s + (0.560 + 0.970i)13-s + (2.16 − 5.68i)15-s − 4.99·16-s + (−0.601 + 1.04i)17-s + (−4.91 + 1.63i)18-s + (1.10 + 1.90i)19-s + ⋯ |
L(s) = 1 | − 1.22·2-s + (−0.987 + 0.159i)3-s + 0.490·4-s + (−0.785 + 1.36i)5-s + (1.20 − 0.195i)6-s + 0.621·8-s + (0.948 − 0.315i)9-s + (0.958 − 1.66i)10-s + (0.918 + 1.59i)11-s + (−0.484 + 0.0783i)12-s + (0.155 + 0.269i)13-s + (0.557 − 1.46i)15-s − 1.24·16-s + (−0.146 + 0.252i)17-s + (−1.15 + 0.385i)18-s + (0.252 + 0.438i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.998−0.0530i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(−0.998−0.0530i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.998−0.0530i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(214,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), −0.998−0.0530i)
|
Particular Values
L(1) |
≈ |
0.00786258+0.296404i |
L(21) |
≈ |
0.00786258+0.296404i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.70−0.276i)T |
| 7 | 1 |
good | 2 | 1+1.72T+2T2 |
| 5 | 1+(1.75−3.04i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−3.04−5.27i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.560−0.970i)T+(−6.5+11.2i)T2 |
| 17 | 1+(0.601−1.04i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.10−1.90i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.636+1.10i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.10−5.37i)T+(−14.5−25.1i)T2 |
| 31 | 1+0.188T+31T2 |
| 37 | 1+(1.78+3.09i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.68−2.91i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.90−3.29i)T+(−21.5−37.2i)T2 |
| 47 | 1+5.72T+47T2 |
| 53 | 1+(−4.16+7.22i)T+(−26.5−45.8i)T2 |
| 59 | 1+11.2T+59T2 |
| 61 | 1−12.0T+61T2 |
| 67 | 1+7.91T+67T2 |
| 71 | 1+12.2T+71T2 |
| 73 | 1+(−2.65+4.60i)T+(−36.5−63.2i)T2 |
| 79 | 1−9.21T+79T2 |
| 83 | 1+(−0.624+1.08i)T+(−41.5−71.8i)T2 |
| 89 | 1+(2.77+4.79i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−8.24+14.2i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32008537612642749139298615868, −10.53918167447863930147982020923, −9.943734045770906235359050308907, −9.080897034968135721029770137534, −7.68113735549747144151456512923, −7.08155066809315242464773925809, −6.44350283441723140239571031205, −4.72253707595297094584414087898, −3.75462655913305783626440773941, −1.70756994147431821787683358470,
0.38347389778777030423567470737, 1.24334862101216035511539138570, 3.91240072540950555943020405836, 4.92572719173772600231667259158, 5.99580590688764171128671063395, 7.24113016964582911459555112711, 8.160431262925640721546996044198, 8.836205747395950255631741273520, 9.573501629201345873375558032508, 10.77518563985246622840527510726