L(s) = 1 | + (0.902 + 1.56i)2-s + (2.28 − 1.94i)3-s + (0.371 − 0.643i)4-s + (4.98 + 2.87i)5-s + (5.09 + 1.81i)6-s + 8.56·8-s + (1.44 − 8.88i)9-s + 10.3i·10-s + (5.09 + 8.82i)11-s + (−0.401 − 2.19i)12-s + (−9.76 − 5.63i)13-s + (16.9 − 3.11i)15-s + (6.23 + 10.8i)16-s + 17.7i·17-s + (15.1 − 5.75i)18-s − 30.7i·19-s + ⋯ |
L(s) = 1 | + (0.451 + 0.781i)2-s + (0.761 − 0.647i)3-s + (0.0929 − 0.160i)4-s + (0.996 + 0.575i)5-s + (0.849 + 0.302i)6-s + 1.07·8-s + (0.160 − 0.987i)9-s + 1.03i·10-s + (0.463 + 0.802i)11-s + (−0.0334 − 0.182i)12-s + (−0.750 − 0.433i)13-s + (1.13 − 0.207i)15-s + (0.389 + 0.675i)16-s + 1.04i·17-s + (0.843 − 0.319i)18-s − 1.61i·19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.940−0.339i)Λ(3−s)
Λ(s)=(=(441s/2ΓC(s+1)L(s)(0.940−0.339i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.940−0.339i
|
Analytic conductor: |
12.0163 |
Root analytic conductor: |
3.46646 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1), 0.940−0.339i)
|
Particular Values
L(23) |
≈ |
3.60389+0.631153i |
L(21) |
≈ |
3.60389+0.631153i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−2.28+1.94i)T |
| 7 | 1 |
good | 2 | 1+(−0.902−1.56i)T+(−2+3.46i)T2 |
| 5 | 1+(−4.98−2.87i)T+(12.5+21.6i)T2 |
| 11 | 1+(−5.09−8.82i)T+(−60.5+104.i)T2 |
| 13 | 1+(9.76+5.63i)T+(84.5+146.i)T2 |
| 17 | 1−17.7iT−289T2 |
| 19 | 1+30.7iT−361T2 |
| 23 | 1+(15.6−27.1i)T+(−264.5−458.i)T2 |
| 29 | 1+(−1.48−2.56i)T+(−420.5+728.i)T2 |
| 31 | 1+(25.0+14.4i)T+(480.5+832.i)T2 |
| 37 | 1−22.1T+1.36e3T2 |
| 41 | 1+(9.95+5.74i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(−19.6−34.0i)T+(−924.5+1.60e3i)T2 |
| 47 | 1+(−18.5+10.7i)T+(1.10e3−1.91e3i)T2 |
| 53 | 1−45.7T+2.80e3T2 |
| 59 | 1+(11.1+6.42i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(72.4−41.8i)T+(1.86e3−3.22e3i)T2 |
| 67 | 1+(10.1−17.6i)T+(−2.24e3−3.88e3i)T2 |
| 71 | 1+92.6T+5.04e3T2 |
| 73 | 1+102.iT−5.32e3T2 |
| 79 | 1+(−50.2−86.9i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(20.6−11.9i)T+(3.44e3−5.96e3i)T2 |
| 89 | 1−55.9iT−7.92e3T2 |
| 97 | 1+(69.6−40.1i)T+(4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81445066233557405504981959314, −9.878753402027952652118937930064, −9.223847258314558447721006108984, −7.80738759438550230511678773928, −7.13093411518222286244029726893, −6.38372832528349539492302656506, −5.55091990639041942216534537708, −4.19650909050858453762268110266, −2.57237446596611253480646038612, −1.62433090957237934379620413627,
1.69031134677528799233598273333, 2.67014260156225410242237071249, 3.81461364961463862361841066010, 4.74076466837563007774075199459, 5.81718979087745998081801550709, 7.31888993481147057915910996687, 8.360621405822654767526259570727, 9.252077005927362702250456598758, 10.00831404195258627075516953429, 10.75079640648091928157835954048