L(s) = 1 | + (1.91 + 3.32i)2-s + (2.23 + 1.99i)3-s + (−5.35 + 9.27i)4-s + (0.187 + 0.108i)5-s + (−2.34 + 11.2i)6-s − 25.7·8-s + (1.02 + 8.94i)9-s + 0.830i·10-s + (−2.22 − 3.85i)11-s + (−30.5 + 10.0i)12-s + (14.9 + 8.61i)13-s + (0.203 + 0.616i)15-s + (−27.9 − 48.4i)16-s + 5.38i·17-s + (−27.7 + 20.5i)18-s − 7.94i·19-s + ⋯ |
L(s) = 1 | + (0.959 + 1.66i)2-s + (0.746 + 0.665i)3-s + (−1.33 + 2.31i)4-s + (0.0375 + 0.0216i)5-s + (−0.390 + 1.87i)6-s − 3.21·8-s + (0.113 + 0.993i)9-s + 0.0830i·10-s + (−0.202 − 0.350i)11-s + (−2.54 + 0.839i)12-s + (1.14 + 0.663i)13-s + (0.0135 + 0.0411i)15-s + (−1.74 − 3.02i)16-s + 0.316i·17-s + (−1.54 + 1.14i)18-s − 0.418i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.812 + 0.582i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.812 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.964974 - 3.00296i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.964974 - 3.00296i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.23 - 1.99i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.91 - 3.32i)T + (-2 + 3.46i)T^{2} \) |
| 5 | \( 1 + (-0.187 - 0.108i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (2.22 + 3.85i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-14.9 - 8.61i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 5.38iT - 289T^{2} \) |
| 19 | \( 1 + 7.94iT - 361T^{2} \) |
| 23 | \( 1 + (-9.53 + 16.5i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-3.57 - 6.18i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-20.0 - 11.5i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 10.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-3.32 - 1.91i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-30.1 - 52.1i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-42.4 + 24.4i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 50.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-75.2 - 43.4i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (35.6 - 20.5i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (32.1 - 55.7i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 11.8T + 5.04e3T^{2} \) |
| 73 | \( 1 - 32.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (7.26 + 12.5i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-94.9 + 54.8i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 128. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-63.3 + 36.5i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63194332139017017290164842671, −10.42275894541452624627334057343, −9.043873393771725745468951015722, −8.576554139105132811190317193732, −7.75669192143904737440201481884, −6.66640930640397380947761420078, −5.82448360690835027465285696614, −4.66968636655980956961334713212, −3.98049463597930158534705454164, −2.88223109475429604315914074166,
0.952870871289612051552688547398, 2.06280816068259840774806166255, 3.19460469489594074485230612922, 3.93360342593390187362007918905, 5.31565571609271954234584009191, 6.26064929821923125650381642569, 7.73891816488263827204872343560, 8.922271936107180335302758559097, 9.648869322508740757538308016618, 10.60084019209356519572629300092