Properties

Label 2-21e2-63.13-c2-0-22
Degree 22
Conductor 441441
Sign 0.812+0.582i-0.812 + 0.582i
Analytic cond. 12.016312.0163
Root an. cond. 3.466463.46646
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.91 + 3.32i)2-s + (2.23 + 1.99i)3-s + (−5.35 + 9.27i)4-s + (0.187 + 0.108i)5-s + (−2.34 + 11.2i)6-s − 25.7·8-s + (1.02 + 8.94i)9-s + 0.830i·10-s + (−2.22 − 3.85i)11-s + (−30.5 + 10.0i)12-s + (14.9 + 8.61i)13-s + (0.203 + 0.616i)15-s + (−27.9 − 48.4i)16-s + 5.38i·17-s + (−27.7 + 20.5i)18-s − 7.94i·19-s + ⋯
L(s)  = 1  + (0.959 + 1.66i)2-s + (0.746 + 0.665i)3-s + (−1.33 + 2.31i)4-s + (0.0375 + 0.0216i)5-s + (−0.390 + 1.87i)6-s − 3.21·8-s + (0.113 + 0.993i)9-s + 0.0830i·10-s + (−0.202 − 0.350i)11-s + (−2.54 + 0.839i)12-s + (1.14 + 0.663i)13-s + (0.0135 + 0.0411i)15-s + (−1.74 − 3.02i)16-s + 0.316i·17-s + (−1.54 + 1.14i)18-s − 0.418i·19-s + ⋯

Functional equation

Λ(s)=(441s/2ΓC(s)L(s)=((0.812+0.582i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.812 + 0.582i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(441s/2ΓC(s+1)L(s)=((0.812+0.582i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.812 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 441441    =    32723^{2} \cdot 7^{2}
Sign: 0.812+0.582i-0.812 + 0.582i
Analytic conductor: 12.016312.0163
Root analytic conductor: 3.466463.46646
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ441(391,)\chi_{441} (391, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 441, ( :1), 0.812+0.582i)(2,\ 441,\ (\ :1),\ -0.812 + 0.582i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.9649743.00296i0.964974 - 3.00296i
L(12)L(\frac12) \approx 0.9649743.00296i0.964974 - 3.00296i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(2.231.99i)T 1 + (-2.23 - 1.99i)T
7 1 1
good2 1+(1.913.32i)T+(2+3.46i)T2 1 + (-1.91 - 3.32i)T + (-2 + 3.46i)T^{2}
5 1+(0.1870.108i)T+(12.5+21.6i)T2 1 + (-0.187 - 0.108i)T + (12.5 + 21.6i)T^{2}
11 1+(2.22+3.85i)T+(60.5+104.i)T2 1 + (2.22 + 3.85i)T + (-60.5 + 104. i)T^{2}
13 1+(14.98.61i)T+(84.5+146.i)T2 1 + (-14.9 - 8.61i)T + (84.5 + 146. i)T^{2}
17 15.38iT289T2 1 - 5.38iT - 289T^{2}
19 1+7.94iT361T2 1 + 7.94iT - 361T^{2}
23 1+(9.53+16.5i)T+(264.5458.i)T2 1 + (-9.53 + 16.5i)T + (-264.5 - 458. i)T^{2}
29 1+(3.576.18i)T+(420.5+728.i)T2 1 + (-3.57 - 6.18i)T + (-420.5 + 728. i)T^{2}
31 1+(20.011.5i)T+(480.5+832.i)T2 1 + (-20.0 - 11.5i)T + (480.5 + 832. i)T^{2}
37 1+10.3T+1.36e3T2 1 + 10.3T + 1.36e3T^{2}
41 1+(3.321.91i)T+(840.5+1.45e3i)T2 1 + (-3.32 - 1.91i)T + (840.5 + 1.45e3i)T^{2}
43 1+(30.152.1i)T+(924.5+1.60e3i)T2 1 + (-30.1 - 52.1i)T + (-924.5 + 1.60e3i)T^{2}
47 1+(42.4+24.4i)T+(1.10e31.91e3i)T2 1 + (-42.4 + 24.4i)T + (1.10e3 - 1.91e3i)T^{2}
53 1+50.0T+2.80e3T2 1 + 50.0T + 2.80e3T^{2}
59 1+(75.243.4i)T+(1.74e3+3.01e3i)T2 1 + (-75.2 - 43.4i)T + (1.74e3 + 3.01e3i)T^{2}
61 1+(35.620.5i)T+(1.86e33.22e3i)T2 1 + (35.6 - 20.5i)T + (1.86e3 - 3.22e3i)T^{2}
67 1+(32.155.7i)T+(2.24e33.88e3i)T2 1 + (32.1 - 55.7i)T + (-2.24e3 - 3.88e3i)T^{2}
71 1+11.8T+5.04e3T2 1 + 11.8T + 5.04e3T^{2}
73 132.0iT5.32e3T2 1 - 32.0iT - 5.32e3T^{2}
79 1+(7.26+12.5i)T+(3.12e3+5.40e3i)T2 1 + (7.26 + 12.5i)T + (-3.12e3 + 5.40e3i)T^{2}
83 1+(94.9+54.8i)T+(3.44e35.96e3i)T2 1 + (-94.9 + 54.8i)T + (3.44e3 - 5.96e3i)T^{2}
89 1+128.iT7.92e3T2 1 + 128. iT - 7.92e3T^{2}
97 1+(63.3+36.5i)T+(4.70e38.14e3i)T2 1 + (-63.3 + 36.5i)T + (4.70e3 - 8.14e3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.63194332139017017290164842671, −10.42275894541452624627334057343, −9.043873393771725745468951015722, −8.576554139105132811190317193732, −7.75669192143904737440201481884, −6.66640930640397380947761420078, −5.82448360690835027465285696614, −4.66968636655980956961334713212, −3.98049463597930158534705454164, −2.88223109475429604315914074166, 0.952870871289612051552688547398, 2.06280816068259840774806166255, 3.19460469489594074485230612922, 3.93360342593390187362007918905, 5.31565571609271954234584009191, 6.26064929821923125650381642569, 7.73891816488263827204872343560, 8.922271936107180335302758559097, 9.648869322508740757538308016618, 10.60084019209356519572629300092

Graph of the ZZ-function along the critical line