L(s) = 1 | + (−1.67 − 2.90i)2-s + (1.29 + 2.70i)3-s + (−3.62 + 6.28i)4-s + (−0.769 − 0.444i)5-s + (5.68 − 8.30i)6-s + 10.9·8-s + (−5.64 + 7.01i)9-s + 2.98i·10-s + (2.75 + 4.76i)11-s + (−21.7 − 1.67i)12-s + (−12.3 − 7.11i)13-s + (0.205 − 2.65i)15-s + (−3.81 − 6.61i)16-s + 13.0i·17-s + (29.8 + 4.63i)18-s − 26.2i·19-s + ⋯ |
L(s) = 1 | + (−0.838 − 1.45i)2-s + (0.431 + 0.901i)3-s + (−0.907 + 1.57i)4-s + (−0.153 − 0.0888i)5-s + (0.948 − 1.38i)6-s + 1.36·8-s + (−0.627 + 0.778i)9-s + 0.298i·10-s + (0.250 + 0.433i)11-s + (−1.80 − 0.139i)12-s + (−0.948 − 0.547i)13-s + (0.0136 − 0.177i)15-s + (−0.238 − 0.413i)16-s + 0.766i·17-s + (1.65 + 0.257i)18-s − 1.38i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.168i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.985 - 0.168i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0283086 + 0.332751i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0283086 + 0.332751i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.29 - 2.70i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.67 + 2.90i)T + (-2 + 3.46i)T^{2} \) |
| 5 | \( 1 + (0.769 + 0.444i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-2.75 - 4.76i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (12.3 + 7.11i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 13.0iT - 289T^{2} \) |
| 19 | \( 1 + 26.2iT - 361T^{2} \) |
| 23 | \( 1 + (-18.0 + 31.2i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-16.4 - 28.5i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (32.8 + 18.9i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 42.9T + 1.36e3T^{2} \) |
| 41 | \( 1 + (51.1 + 29.5i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (14.4 + 25.0i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-10.8 + 6.27i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 9.76T + 2.80e3T^{2} \) |
| 59 | \( 1 + (21.3 + 12.3i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-15.7 + 9.08i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (15.1 - 26.2i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 43.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + 27.2iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-33.7 - 58.3i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (8.30 - 4.79i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 63.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (76.9 - 44.4i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47435669619129718370931219196, −9.711592193291311832447652909476, −8.853423568691689694799632799373, −8.332151652479201453289265649289, −7.03314495614393984497313167359, −5.13502645953164818496049512220, −4.15569782284610785790654737429, −3.05677554011283467981370212128, −2.11829291933261700811621135150, −0.17525824766052124518320763831,
1.50439385662654092617045940852, 3.34351921386586379363534269275, 5.18836109690554358747369832465, 6.11374798298990473725302438413, 7.11725605292647712337259873916, 7.52287770111654583607384017216, 8.445908625553562732217572290001, 9.254767314618626504581882388581, 9.936689947537891179153865779760, 11.48862198620498275983106409553