L(s) = 1 | + (0.662 − 1.14i)2-s + (2.99 − 0.0895i)3-s + (1.12 + 1.94i)4-s + (−6.26 + 3.61i)5-s + (1.88 − 3.49i)6-s + 8.27·8-s + (8.98 − 0.537i)9-s + 9.58i·10-s + (−8.56 + 14.8i)11-s + (3.54 + 5.72i)12-s + (−9.05 + 5.22i)13-s + (−18.4 + 11.4i)15-s + (0.990 − 1.71i)16-s + 6.23i·17-s + (5.33 − 10.6i)18-s − 11.8i·19-s + ⋯ |
L(s) = 1 | + (0.331 − 0.573i)2-s + (0.999 − 0.0298i)3-s + (0.280 + 0.486i)4-s + (−1.25 + 0.723i)5-s + (0.313 − 0.583i)6-s + 1.03·8-s + (0.998 − 0.0596i)9-s + 0.958i·10-s + (−0.778 + 1.34i)11-s + (0.295 + 0.477i)12-s + (−0.696 + 0.402i)13-s + (−1.23 + 0.760i)15-s + (0.0618 − 0.107i)16-s + 0.366i·17-s + (0.296 − 0.592i)18-s − 0.625i·19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.433−0.901i)Λ(3−s)
Λ(s)=(=(441s/2ΓC(s+1)L(s)(0.433−0.901i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.433−0.901i
|
Analytic conductor: |
12.0163 |
Root analytic conductor: |
3.46646 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(97,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1), 0.433−0.901i)
|
Particular Values
L(23) |
≈ |
1.95866+1.23142i |
L(21) |
≈ |
1.95866+1.23142i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−2.99+0.0895i)T |
| 7 | 1 |
good | 2 | 1+(−0.662+1.14i)T+(−2−3.46i)T2 |
| 5 | 1+(6.26−3.61i)T+(12.5−21.6i)T2 |
| 11 | 1+(8.56−14.8i)T+(−60.5−104.i)T2 |
| 13 | 1+(9.05−5.22i)T+(84.5−146.i)T2 |
| 17 | 1−6.23iT−289T2 |
| 19 | 1+11.8iT−361T2 |
| 23 | 1+(−5.85−10.1i)T+(−264.5+458.i)T2 |
| 29 | 1+(5.48−9.50i)T+(−420.5−728.i)T2 |
| 31 | 1+(24.3−14.0i)T+(480.5−832.i)T2 |
| 37 | 1−67.4T+1.36e3T2 |
| 41 | 1+(14.1−8.17i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−31.2+54.2i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−26.1−15.1i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−22.6T+2.80e3T2 |
| 59 | 1+(1.58−0.916i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−12.9−7.49i)T+(1.86e3+3.22e3i)T2 |
| 67 | 1+(29.7+51.4i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1−6.84T+5.04e3T2 |
| 73 | 1+87.0iT−5.32e3T2 |
| 79 | 1+(34.3−59.5i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−30.2−17.4i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1−14.9iT−7.92e3T2 |
| 97 | 1+(41.2+23.8i)T+(4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10372739623439412410281944486, −10.37487172209498045780532494167, −9.315004073046999332684073567327, −8.070928446054567240043161822255, −7.34539976851586879585465373791, −7.07601540296955579402458998539, −4.70551332037357589536713093145, −3.95120197889541891553461071712, −2.95815510627998880517416855513, −2.09930614407795447255560472607,
0.77054436202753780245554438931, 2.64953232420724279337392410267, 3.94364103226046977023889756614, 4.88127127444267681743288647825, 5.94552635635639242485588857243, 7.41036543342754087760178324424, 7.84746597697643610819295128658, 8.628210191308143367453459739746, 9.752303484067059652645650073945, 10.75766098765106905929596038691