L(s) = 1 | + (−2.37 − 1.37i)2-s + (2.78 − 1.10i)3-s + (1.76 + 3.06i)4-s + (−2.32 + 1.34i)5-s + (−8.14 − 1.18i)6-s + 1.27i·8-s + (6.53 − 6.18i)9-s + 7.37·10-s + (−7.18 − 4.14i)11-s + (8.32 + 6.57i)12-s + (1.91 + 3.31i)13-s + (−4.99 + 6.32i)15-s + (8.82 − 15.2i)16-s − 16.8i·17-s + (−24.0 + 5.73i)18-s − 9.54·19-s + ⋯ |
L(s) = 1 | + (−1.18 − 0.686i)2-s + (0.929 − 0.369i)3-s + (0.441 + 0.765i)4-s + (−0.465 + 0.268i)5-s + (−1.35 − 0.197i)6-s + 0.159i·8-s + (0.726 − 0.687i)9-s + 0.737·10-s + (−0.653 − 0.377i)11-s + (0.693 + 0.547i)12-s + (0.147 + 0.255i)13-s + (−0.332 + 0.421i)15-s + (0.551 − 0.954i)16-s − 0.993i·17-s + (−1.33 + 0.318i)18-s − 0.502·19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.894−0.447i)Λ(3−s)
Λ(s)=(=(441s/2ΓC(s+1)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
12.0163 |
Root analytic conductor: |
3.46646 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(344,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1), −0.894−0.447i)
|
Particular Values
L(23) |
≈ |
0.0849704+0.359732i |
L(21) |
≈ |
0.0849704+0.359732i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−2.78+1.10i)T |
| 7 | 1 |
good | 2 | 1+(2.37+1.37i)T+(2+3.46i)T2 |
| 5 | 1+(2.32−1.34i)T+(12.5−21.6i)T2 |
| 11 | 1+(7.18+4.14i)T+(60.5+104.i)T2 |
| 13 | 1+(−1.91−3.31i)T+(−84.5+146.i)T2 |
| 17 | 1+16.8iT−289T2 |
| 19 | 1+9.54T+361T2 |
| 23 | 1+(21.1−12.2i)T+(264.5−458.i)T2 |
| 29 | 1+(41.1+23.7i)T+(420.5+728.i)T2 |
| 31 | 1+(19.6+33.9i)T+(−480.5+832.i)T2 |
| 37 | 1−46.6T+1.36e3T2 |
| 41 | 1+(51.2−29.5i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−28.0+48.5i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(18.6+10.7i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1+25.6iT−2.80e3T2 |
| 59 | 1+(40.1−23.1i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(30.1−52.2i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−32.0−55.4i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1−49.6iT−5.04e3T2 |
| 73 | 1+117.T+5.32e3T2 |
| 79 | 1+(20.2−35.1i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(64.7+37.3i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+69.2iT−7.92e3T2 |
| 97 | 1+(46.9−81.3i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12729361494691039001021904127, −9.493084977232850497874802966824, −8.678810062408868547499346258254, −7.78769242606292771734467728744, −7.33428022338668715620517932434, −5.74550863083521439432024236388, −4.00389518662516753484055277204, −2.83440729951119438354144098383, −1.83104542501761608913831086084, −0.19670121821897849674900999754,
1.81260871833609993223277356948, 3.50307841922487776241627815324, 4.54865550607639373984479139739, 6.07802223319684042175044450169, 7.31494083128697698287602284218, 8.006791559196470819257702216840, 8.537146432192320028632759007378, 9.391571659386476180826888605579, 10.25680192866760298900286715669, 10.86339379074746413613919138882