L(s) = 1 | + (1.11 + 0.645i)2-s + (2.77 + 1.13i)3-s + (−1.16 − 2.02i)4-s + (−4.18 + 2.41i)5-s + (2.36 + 3.06i)6-s − 8.17i·8-s + (6.40 + 6.32i)9-s − 6.24·10-s + (11.8 + 6.84i)11-s + (−0.937 − 6.93i)12-s + (8.59 + 14.8i)13-s + (−14.3 + 1.94i)15-s + (0.609 − 1.05i)16-s + 8.21i·17-s + (3.08 + 11.2i)18-s + 13.8·19-s + ⋯ |
L(s) = 1 | + (0.558 + 0.322i)2-s + (0.925 + 0.379i)3-s + (−0.291 − 0.505i)4-s + (−0.837 + 0.483i)5-s + (0.394 + 0.510i)6-s − 1.02i·8-s + (0.711 + 0.702i)9-s − 0.624·10-s + (1.07 + 0.621i)11-s + (−0.0781 − 0.578i)12-s + (0.661 + 1.14i)13-s + (−0.958 + 0.129i)15-s + (0.0381 − 0.0660i)16-s + 0.483i·17-s + (0.171 + 0.622i)18-s + 0.729·19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.416−0.909i)Λ(3−s)
Λ(s)=(=(441s/2ΓC(s+1)L(s)(0.416−0.909i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.416−0.909i
|
Analytic conductor: |
12.0163 |
Root analytic conductor: |
3.46646 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(344,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1), 0.416−0.909i)
|
Particular Values
L(23) |
≈ |
2.27691+1.46158i |
L(21) |
≈ |
2.27691+1.46158i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−2.77−1.13i)T |
| 7 | 1 |
good | 2 | 1+(−1.11−0.645i)T+(2+3.46i)T2 |
| 5 | 1+(4.18−2.41i)T+(12.5−21.6i)T2 |
| 11 | 1+(−11.8−6.84i)T+(60.5+104.i)T2 |
| 13 | 1+(−8.59−14.8i)T+(−84.5+146.i)T2 |
| 17 | 1−8.21iT−289T2 |
| 19 | 1−13.8T+361T2 |
| 23 | 1+(−16.0+9.26i)T+(264.5−458.i)T2 |
| 29 | 1+(18.1+10.4i)T+(420.5+728.i)T2 |
| 31 | 1+(−25.7−44.6i)T+(−480.5+832.i)T2 |
| 37 | 1+27.6T+1.36e3T2 |
| 41 | 1+(−18.4+10.6i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−18.1+31.5i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(51.4+29.6i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1+93.6iT−2.80e3T2 |
| 59 | 1+(−1.45+0.838i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−32.7+56.6i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−27.6−47.8i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+14.2iT−5.04e3T2 |
| 73 | 1+65.3T+5.32e3T2 |
| 79 | 1+(−3.35+5.80i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−11.6−6.69i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1−15.8iT−7.92e3T2 |
| 97 | 1+(40.7−70.5i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04337160217026028572688260080, −10.02485653322745498307718418225, −9.239142424512684644444953386515, −8.469022188108446515203642806317, −7.12532067715638294998938289581, −6.63416770550470956309166119387, −5.05276886447841510319356197609, −4.05033813496377478861170211813, −3.51593593330666655240321028640, −1.60041723730684402309789664212,
1.00218103876103759331802866858, 2.92387579210259667240894547787, 3.63184715562200674655951385007, 4.50502123983410696740077032038, 5.90414642231805528624359516097, 7.39339140897793279625738065656, 8.061514896317876128642687453027, 8.764197259720797360559245689945, 9.548473838816242504964308958132, 11.15306651279982722501992439309