Properties

Label 2-448-1.1-c5-0-31
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.52·3-s − 72.6·5-s − 49·7-s − 186.·9-s − 30.4·11-s + 1.14e3·13-s + 546.·15-s − 514.·17-s + 2.31e3·19-s + 368.·21-s − 409.·23-s + 2.15e3·25-s + 3.23e3·27-s + 1.69e3·29-s + 7.03e3·31-s + 229.·33-s + 3.55e3·35-s − 3.93e3·37-s − 8.61e3·39-s − 9.23e3·41-s − 2.13e4·43-s + 1.35e4·45-s − 9.94e3·47-s + 2.40e3·49-s + 3.86e3·51-s + 3.45e4·53-s + 2.21e3·55-s + ⋯
L(s)  = 1  − 0.482·3-s − 1.29·5-s − 0.377·7-s − 0.767·9-s − 0.0758·11-s + 1.88·13-s + 0.626·15-s − 0.431·17-s + 1.47·19-s + 0.182·21-s − 0.161·23-s + 0.688·25-s + 0.852·27-s + 0.373·29-s + 1.31·31-s + 0.0366·33-s + 0.491·35-s − 0.472·37-s − 0.907·39-s − 0.858·41-s − 1.76·43-s + 0.996·45-s − 0.656·47-s + 0.142·49-s + 0.208·51-s + 1.69·53-s + 0.0985·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 49T \)
good3 \( 1 + 7.52T + 243T^{2} \)
5 \( 1 + 72.6T + 3.12e3T^{2} \)
11 \( 1 + 30.4T + 1.61e5T^{2} \)
13 \( 1 - 1.14e3T + 3.71e5T^{2} \)
17 \( 1 + 514.T + 1.41e6T^{2} \)
19 \( 1 - 2.31e3T + 2.47e6T^{2} \)
23 \( 1 + 409.T + 6.43e6T^{2} \)
29 \( 1 - 1.69e3T + 2.05e7T^{2} \)
31 \( 1 - 7.03e3T + 2.86e7T^{2} \)
37 \( 1 + 3.93e3T + 6.93e7T^{2} \)
41 \( 1 + 9.23e3T + 1.15e8T^{2} \)
43 \( 1 + 2.13e4T + 1.47e8T^{2} \)
47 \( 1 + 9.94e3T + 2.29e8T^{2} \)
53 \( 1 - 3.45e4T + 4.18e8T^{2} \)
59 \( 1 + 4.63e4T + 7.14e8T^{2} \)
61 \( 1 - 3.38e4T + 8.44e8T^{2} \)
67 \( 1 - 4.92e4T + 1.35e9T^{2} \)
71 \( 1 + 4.95e4T + 1.80e9T^{2} \)
73 \( 1 - 3.38e4T + 2.07e9T^{2} \)
79 \( 1 - 622.T + 3.07e9T^{2} \)
83 \( 1 + 9.72e4T + 3.93e9T^{2} \)
89 \( 1 + 1.69e4T + 5.58e9T^{2} \)
97 \( 1 + 6.54e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.978230480836902827785022286177, −8.608526818452706838020256589848, −8.233031539052172044838508921563, −6.97350018624386768440627804046, −6.12176068106607292035029742376, −5.05333174841542167849968857730, −3.80155628252662423528086357564, −3.07930539757161754397212343379, −1.08409089898978280261779642416, 0, 1.08409089898978280261779642416, 3.07930539757161754397212343379, 3.80155628252662423528086357564, 5.05333174841542167849968857730, 6.12176068106607292035029742376, 6.97350018624386768440627804046, 8.233031539052172044838508921563, 8.608526818452706838020256589848, 9.978230480836902827785022286177

Graph of the $Z$-function along the critical line