L(s) = 1 | − 7.52·3-s − 72.6·5-s − 49·7-s − 186.·9-s − 30.4·11-s + 1.14e3·13-s + 546.·15-s − 514.·17-s + 2.31e3·19-s + 368.·21-s − 409.·23-s + 2.15e3·25-s + 3.23e3·27-s + 1.69e3·29-s + 7.03e3·31-s + 229.·33-s + 3.55e3·35-s − 3.93e3·37-s − 8.61e3·39-s − 9.23e3·41-s − 2.13e4·43-s + 1.35e4·45-s − 9.94e3·47-s + 2.40e3·49-s + 3.86e3·51-s + 3.45e4·53-s + 2.21e3·55-s + ⋯ |
L(s) = 1 | − 0.482·3-s − 1.29·5-s − 0.377·7-s − 0.767·9-s − 0.0758·11-s + 1.88·13-s + 0.626·15-s − 0.431·17-s + 1.47·19-s + 0.182·21-s − 0.161·23-s + 0.688·25-s + 0.852·27-s + 0.373·29-s + 1.31·31-s + 0.0366·33-s + 0.491·35-s − 0.472·37-s − 0.907·39-s − 0.858·41-s − 1.76·43-s + 0.996·45-s − 0.656·47-s + 0.142·49-s + 0.208·51-s + 1.69·53-s + 0.0985·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(448s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+49T |
good | 3 | 1+7.52T+243T2 |
| 5 | 1+72.6T+3.12e3T2 |
| 11 | 1+30.4T+1.61e5T2 |
| 13 | 1−1.14e3T+3.71e5T2 |
| 17 | 1+514.T+1.41e6T2 |
| 19 | 1−2.31e3T+2.47e6T2 |
| 23 | 1+409.T+6.43e6T2 |
| 29 | 1−1.69e3T+2.05e7T2 |
| 31 | 1−7.03e3T+2.86e7T2 |
| 37 | 1+3.93e3T+6.93e7T2 |
| 41 | 1+9.23e3T+1.15e8T2 |
| 43 | 1+2.13e4T+1.47e8T2 |
| 47 | 1+9.94e3T+2.29e8T2 |
| 53 | 1−3.45e4T+4.18e8T2 |
| 59 | 1+4.63e4T+7.14e8T2 |
| 61 | 1−3.38e4T+8.44e8T2 |
| 67 | 1−4.92e4T+1.35e9T2 |
| 71 | 1+4.95e4T+1.80e9T2 |
| 73 | 1−3.38e4T+2.07e9T2 |
| 79 | 1−622.T+3.07e9T2 |
| 83 | 1+9.72e4T+3.93e9T2 |
| 89 | 1+1.69e4T+5.58e9T2 |
| 97 | 1+6.54e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.978230480836902827785022286177, −8.608526818452706838020256589848, −8.233031539052172044838508921563, −6.97350018624386768440627804046, −6.12176068106607292035029742376, −5.05333174841542167849968857730, −3.80155628252662423528086357564, −3.07930539757161754397212343379, −1.08409089898978280261779642416, 0,
1.08409089898978280261779642416, 3.07930539757161754397212343379, 3.80155628252662423528086357564, 5.05333174841542167849968857730, 6.12176068106607292035029742376, 6.97350018624386768440627804046, 8.233031539052172044838508921563, 8.608526818452706838020256589848, 9.978230480836902827785022286177