Properties

Label 2-448-1.1-c5-0-58
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14·3-s + 64·5-s + 49·7-s − 47·9-s − 420·11-s − 860·13-s + 896·15-s + 830·17-s + 490·19-s + 686·21-s − 4.87e3·23-s + 971·25-s − 4.06e3·27-s − 8.75e3·29-s − 5.62e3·31-s − 5.88e3·33-s + 3.13e3·35-s − 1.43e3·37-s − 1.20e4·39-s − 9.25e3·41-s + 1.47e4·43-s − 3.00e3·45-s + 1.01e4·47-s + 2.40e3·49-s + 1.16e4·51-s + 2.30e4·53-s − 2.68e4·55-s + ⋯
L(s)  = 1  + 0.898·3-s + 1.14·5-s + 0.377·7-s − 0.193·9-s − 1.04·11-s − 1.41·13-s + 1.02·15-s + 0.696·17-s + 0.311·19-s + 0.339·21-s − 1.92·23-s + 0.310·25-s − 1.07·27-s − 1.93·29-s − 1.05·31-s − 0.939·33-s + 0.432·35-s − 0.172·37-s − 1.26·39-s − 0.860·41-s + 1.21·43-s − 0.221·45-s + 0.667·47-s + 1/7·49-s + 0.625·51-s + 1.12·53-s − 1.19·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p^{2} T \)
good3 \( 1 - 14 T + p^{5} T^{2} \)
5 \( 1 - 64 T + p^{5} T^{2} \)
11 \( 1 + 420 T + p^{5} T^{2} \)
13 \( 1 + 860 T + p^{5} T^{2} \)
17 \( 1 - 830 T + p^{5} T^{2} \)
19 \( 1 - 490 T + p^{5} T^{2} \)
23 \( 1 + 4872 T + p^{5} T^{2} \)
29 \( 1 + 8754 T + p^{5} T^{2} \)
31 \( 1 + 5628 T + p^{5} T^{2} \)
37 \( 1 + 1434 T + p^{5} T^{2} \)
41 \( 1 + 9258 T + p^{5} T^{2} \)
43 \( 1 - 14756 T + p^{5} T^{2} \)
47 \( 1 - 10108 T + p^{5} T^{2} \)
53 \( 1 - 23058 T + p^{5} T^{2} \)
59 \( 1 + 13734 T + p^{5} T^{2} \)
61 \( 1 - 25352 T + p^{5} T^{2} \)
67 \( 1 - 19768 T + p^{5} T^{2} \)
71 \( 1 + 1792 T + p^{5} T^{2} \)
73 \( 1 - 37914 T + p^{5} T^{2} \)
79 \( 1 + 95984 T + p^{5} T^{2} \)
83 \( 1 - 88242 T + p^{5} T^{2} \)
89 \( 1 - 43762 T + p^{5} T^{2} \)
97 \( 1 - 65790 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.771440832395049466163920814143, −9.081608451124252675555813129672, −7.909643362710055144384162271695, −7.42461513012350669095683574268, −5.75836478299341086903754461088, −5.30698290943596470042090955864, −3.74503925036624730315838257463, −2.42443588552766616876192544828, −1.96938864745208090008454598664, 0, 1.96938864745208090008454598664, 2.42443588552766616876192544828, 3.74503925036624730315838257463, 5.30698290943596470042090955864, 5.75836478299341086903754461088, 7.42461513012350669095683574268, 7.909643362710055144384162271695, 9.081608451124252675555813129672, 9.771440832395049466163920814143

Graph of the $Z$-function along the critical line