L(s) = 1 | − 6·3-s − 82·5-s + 98·7-s − 114·9-s + 340·11-s − 910·13-s + 492·15-s + 3.21e3·17-s − 674·19-s − 588·21-s + 1.10e3·23-s + 1.89e3·25-s + 126·27-s − 8.06e3·29-s + 6.21e3·31-s − 2.04e3·33-s − 8.03e3·35-s + 8.51e3·37-s + 5.46e3·39-s − 1.30e3·41-s − 1.00e4·43-s + 9.34e3·45-s + 1.27e4·47-s + 7.20e3·49-s − 1.92e4·51-s + 1.12e4·53-s − 2.78e4·55-s + ⋯ |
L(s) = 1 | − 0.384·3-s − 1.46·5-s + 0.755·7-s − 0.469·9-s + 0.847·11-s − 1.49·13-s + 0.564·15-s + 2.69·17-s − 0.428·19-s − 0.290·21-s + 0.435·23-s + 0.607·25-s + 0.0332·27-s − 1.78·29-s + 1.16·31-s − 0.326·33-s − 1.10·35-s + 1.02·37-s + 0.574·39-s − 0.121·41-s − 0.825·43-s + 0.688·45-s + 0.841·47-s + 3/7·49-s − 1.03·51-s + 0.548·53-s − 1.24·55-s + ⋯ |
Λ(s)=(=(200704s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(200704s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
200704
= 212⋅72
|
Sign: |
1
|
Analytic conductor: |
5162.70 |
Root analytic conductor: |
8.47655 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 200704, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−p2T)2 |
good | 3 | D4 | 1+2pT+50pT2+2p6T3+p10T4 |
| 5 | D4 | 1+82T+4826T2+82p5T3+p10T4 |
| 11 | D4 | 1−340T+338582T2−340p5T3+p10T4 |
| 13 | D4 | 1+70pT+2514p2T2+70p6T3+p10T4 |
| 17 | D4 | 1−3216T+5412958T2−3216p5T3+p10T4 |
| 19 | D4 | 1+674T+4367142T2+674p5T3+p10T4 |
| 23 | D4 | 1−48pT+495170pT2−48p6T3+p10T4 |
| 29 | D4 | 1+8064T+52795702T2+8064p5T3+p10T4 |
| 31 | D4 | 1−6212T+51691038T2−6212p5T3+p10T4 |
| 37 | D4 | 1−8512T+104326950T2−8512p5T3+p10T4 |
| 41 | D4 | 1+1304T+73546526T2+1304p5T3+p10T4 |
| 43 | D4 | 1+10004T+99339510T2+10004p5T3+p10T4 |
| 47 | D4 | 1−12748T+323438270T2−12748p5T3+p10T4 |
| 53 | D4 | 1−11220T+664373806T2−11220p5T3+p10T4 |
| 59 | D4 | 1+12018T−285266426T2+12018p5T3+p10T4 |
| 61 | D4 | 1+102738T+4326026138T2+102738p5T3+p10T4 |
| 67 | D4 | 1−24136T+1542084918T2−24136p5T3+p10T4 |
| 71 | D4 | 1+89720T+4576356302T2+89720p5T3+p10T4 |
| 73 | D4 | 1+55588T+3902743302T2+55588p5T3+p10T4 |
| 79 | D4 | 1+48824T+5430110622T2+48824p5T3+p10T4 |
| 83 | D4 | 1−35782T+4098945062T2−35782p5T3+p10T4 |
| 89 | D4 | 1+18300T+3539716918T2+18300p5T3+p10T4 |
| 97 | D4 | 1+69984T+18325482398T2+69984p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03773221407874887514480943074, −9.662997700123196625103277743056, −9.197714777179346623066876141888, −8.632133469694280567934644288930, −8.055293378492272352878430780646, −7.66961035238385614050140663434, −7.51149085407284730129050631782, −7.07858730710418962077680986477, −6.20612156606446715442394197321, −5.73927819829446774210839168078, −5.32593117966838988713421688666, −4.66289318613400213650773080573, −4.27576510633589839234681588359, −3.71896435759485326372570724066, −3.09740284118574835355016953005, −2.60946332620890914514148008616, −1.46051276429475999513353927990, −1.15939878677846291994100853080, 0, 0,
1.15939878677846291994100853080, 1.46051276429475999513353927990, 2.60946332620890914514148008616, 3.09740284118574835355016953005, 3.71896435759485326372570724066, 4.27576510633589839234681588359, 4.66289318613400213650773080573, 5.32593117966838988713421688666, 5.73927819829446774210839168078, 6.20612156606446715442394197321, 7.07858730710418962077680986477, 7.51149085407284730129050631782, 7.66961035238385614050140663434, 8.055293378492272352878430780646, 8.632133469694280567934644288930, 9.197714777179346623066876141888, 9.662997700123196625103277743056, 10.03773221407874887514480943074