L(s) = 1 | − 0.810·3-s − 71.6·5-s − 49·7-s − 242.·9-s − 569.·11-s − 137.·13-s + 58.0·15-s − 418.·17-s − 2.55e3·19-s + 39.7·21-s − 127.·23-s + 2.01e3·25-s + 393.·27-s − 2.31e3·29-s − 3.99e3·31-s + 461.·33-s + 3.51e3·35-s + 3.85e3·37-s + 111.·39-s − 4.94e3·41-s − 1.36e4·43-s + 1.73e4·45-s + 2.76e4·47-s + 2.40e3·49-s + 339.·51-s − 3.73e4·53-s + 4.08e4·55-s + ⋯ |
L(s) = 1 | − 0.0519·3-s − 1.28·5-s − 0.377·7-s − 0.997·9-s − 1.41·11-s − 0.225·13-s + 0.0666·15-s − 0.351·17-s − 1.62·19-s + 0.0196·21-s − 0.0500·23-s + 0.643·25-s + 0.103·27-s − 0.510·29-s − 0.746·31-s + 0.0737·33-s + 0.484·35-s + 0.462·37-s + 0.0117·39-s − 0.459·41-s − 1.12·43-s + 1.27·45-s + 1.82·47-s + 0.142·49-s + 0.0182·51-s − 1.82·53-s + 1.81·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(448s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.06782769158 |
L(21) |
≈ |
0.06782769158 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+49T |
good | 3 | 1+0.810T+243T2 |
| 5 | 1+71.6T+3.12e3T2 |
| 11 | 1+569.T+1.61e5T2 |
| 13 | 1+137.T+3.71e5T2 |
| 17 | 1+418.T+1.41e6T2 |
| 19 | 1+2.55e3T+2.47e6T2 |
| 23 | 1+127.T+6.43e6T2 |
| 29 | 1+2.31e3T+2.05e7T2 |
| 31 | 1+3.99e3T+2.86e7T2 |
| 37 | 1−3.85e3T+6.93e7T2 |
| 41 | 1+4.94e3T+1.15e8T2 |
| 43 | 1+1.36e4T+1.47e8T2 |
| 47 | 1−2.76e4T+2.29e8T2 |
| 53 | 1+3.73e4T+4.18e8T2 |
| 59 | 1+3.69e4T+7.14e8T2 |
| 61 | 1−3.80e3T+8.44e8T2 |
| 67 | 1−2.24e4T+1.35e9T2 |
| 71 | 1−5.50e4T+1.80e9T2 |
| 73 | 1+6.92e4T+2.07e9T2 |
| 79 | 1−4.09e4T+3.07e9T2 |
| 83 | 1−1.97e4T+3.93e9T2 |
| 89 | 1−1.04e5T+5.58e9T2 |
| 97 | 1+9.66e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63478178506018427936318502863, −9.262870250451126872019281470269, −8.276836071218806798378037341099, −7.76674478449369897042364089495, −6.62597626682276292426752736196, −5.50911902101865049701541958350, −4.43773254779062925298312416849, −3.34965852225122933882398643652, −2.32119607809654958738102314697, −0.12399881193292019926013275639,
0.12399881193292019926013275639, 2.32119607809654958738102314697, 3.34965852225122933882398643652, 4.43773254779062925298312416849, 5.50911902101865049701541958350, 6.62597626682276292426752736196, 7.76674478449369897042364089495, 8.276836071218806798378037341099, 9.262870250451126872019281470269, 10.63478178506018427936318502863