Properties

Label 2-448-1.1-c7-0-56
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $139.948$
Root an. cond. $11.8299$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 38.7·3-s + 496.·5-s + 343·7-s − 684.·9-s + 4.03e3·11-s + 1.44e4·13-s + 1.92e4·15-s − 2.67e4·17-s + 3.66e4·19-s + 1.32e4·21-s + 3.49e4·23-s + 1.68e5·25-s − 1.11e5·27-s − 3.58e4·29-s − 1.98e5·31-s + 1.56e5·33-s + 1.70e5·35-s + 1.14e5·37-s + 5.60e5·39-s + 2.45e5·41-s + 3.02e4·43-s − 3.39e5·45-s + 3.05e5·47-s + 1.17e5·49-s − 1.03e6·51-s + 1.21e6·53-s + 2.00e6·55-s + ⋯
L(s)  = 1  + 0.828·3-s + 1.77·5-s + 0.377·7-s − 0.312·9-s + 0.914·11-s + 1.82·13-s + 1.47·15-s − 1.32·17-s + 1.22·19-s + 0.313·21-s + 0.598·23-s + 2.15·25-s − 1.08·27-s − 0.273·29-s − 1.19·31-s + 0.757·33-s + 0.671·35-s + 0.371·37-s + 1.51·39-s + 0.557·41-s + 0.0579·43-s − 0.555·45-s + 0.428·47-s + 0.142·49-s − 1.09·51-s + 1.11·53-s + 1.62·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(139.948\)
Root analytic conductor: \(11.8299\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(5.592687293\)
\(L(\frac12)\) \(\approx\) \(5.592687293\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 343T \)
good3 \( 1 - 38.7T + 2.18e3T^{2} \)
5 \( 1 - 496.T + 7.81e4T^{2} \)
11 \( 1 - 4.03e3T + 1.94e7T^{2} \)
13 \( 1 - 1.44e4T + 6.27e7T^{2} \)
17 \( 1 + 2.67e4T + 4.10e8T^{2} \)
19 \( 1 - 3.66e4T + 8.93e8T^{2} \)
23 \( 1 - 3.49e4T + 3.40e9T^{2} \)
29 \( 1 + 3.58e4T + 1.72e10T^{2} \)
31 \( 1 + 1.98e5T + 2.75e10T^{2} \)
37 \( 1 - 1.14e5T + 9.49e10T^{2} \)
41 \( 1 - 2.45e5T + 1.94e11T^{2} \)
43 \( 1 - 3.02e4T + 2.71e11T^{2} \)
47 \( 1 - 3.05e5T + 5.06e11T^{2} \)
53 \( 1 - 1.21e6T + 1.17e12T^{2} \)
59 \( 1 + 1.53e6T + 2.48e12T^{2} \)
61 \( 1 - 4.50e4T + 3.14e12T^{2} \)
67 \( 1 - 3.08e6T + 6.06e12T^{2} \)
71 \( 1 - 1.69e6T + 9.09e12T^{2} \)
73 \( 1 + 3.86e6T + 1.10e13T^{2} \)
79 \( 1 + 2.00e6T + 1.92e13T^{2} \)
83 \( 1 + 8.28e6T + 2.71e13T^{2} \)
89 \( 1 + 6.50e6T + 4.42e13T^{2} \)
97 \( 1 + 1.14e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.593543712792588602672561923441, −9.029440840865250741881308379668, −8.541728039883839052785501903308, −7.08791479017151789692315424602, −6.09934699351929186066554802649, −5.46244380002331230838653235010, −3.99105605414733900900972953126, −2.88503624387076488691915598679, −1.86750051256510849543147887986, −1.13889030639344506915434861211, 1.13889030639344506915434861211, 1.86750051256510849543147887986, 2.88503624387076488691915598679, 3.99105605414733900900972953126, 5.46244380002331230838653235010, 6.09934699351929186066554802649, 7.08791479017151789692315424602, 8.541728039883839052785501903308, 9.029440840865250741881308379668, 9.593543712792588602672561923441

Graph of the $Z$-function along the critical line