L(s) = 1 | − 14.7·2-s − 1.83e3·4-s + 3.12e3·5-s + 7.99e4·7-s + 5.71e4·8-s − 4.59e4·10-s − 8.05e5·11-s − 1.19e6·13-s − 1.17e6·14-s + 2.91e6·16-s − 2.63e6·17-s + 1.16e7·19-s − 5.72e6·20-s + 1.18e7·22-s − 1.84e7·23-s + 9.76e6·25-s + 1.76e7·26-s − 1.46e8·28-s + 1.90e8·29-s + 1.01e8·31-s − 1.59e8·32-s + 3.87e7·34-s + 2.49e8·35-s + 8.06e7·37-s − 1.70e8·38-s + 1.78e8·40-s − 2.26e8·41-s + ⋯ |
L(s) = 1 | − 0.325·2-s − 0.894·4-s + 0.447·5-s + 1.79·7-s + 0.616·8-s − 0.145·10-s − 1.50·11-s − 0.894·13-s − 0.584·14-s + 0.693·16-s − 0.449·17-s + 1.07·19-s − 0.399·20-s + 0.490·22-s − 0.596·23-s + 0.199·25-s + 0.290·26-s − 1.60·28-s + 1.72·29-s + 0.634·31-s − 0.841·32-s + 0.146·34-s + 0.803·35-s + 0.191·37-s − 0.349·38-s + 0.275·40-s − 0.305·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(1.601691775\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.601691775\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - 3.12e3T \) |
good | 2 | \( 1 + 14.7T + 2.04e3T^{2} \) |
| 7 | \( 1 - 7.99e4T + 1.97e9T^{2} \) |
| 11 | \( 1 + 8.05e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 1.19e6T + 1.79e12T^{2} \) |
| 17 | \( 1 + 2.63e6T + 3.42e13T^{2} \) |
| 19 | \( 1 - 1.16e7T + 1.16e14T^{2} \) |
| 23 | \( 1 + 1.84e7T + 9.52e14T^{2} \) |
| 29 | \( 1 - 1.90e8T + 1.22e16T^{2} \) |
| 31 | \( 1 - 1.01e8T + 2.54e16T^{2} \) |
| 37 | \( 1 - 8.06e7T + 1.77e17T^{2} \) |
| 41 | \( 1 + 2.26e8T + 5.50e17T^{2} \) |
| 43 | \( 1 - 1.67e9T + 9.29e17T^{2} \) |
| 47 | \( 1 + 8.58e8T + 2.47e18T^{2} \) |
| 53 | \( 1 - 3.52e9T + 9.26e18T^{2} \) |
| 59 | \( 1 + 4.35e9T + 3.01e19T^{2} \) |
| 61 | \( 1 + 1.65e9T + 4.35e19T^{2} \) |
| 67 | \( 1 - 7.58e9T + 1.22e20T^{2} \) |
| 71 | \( 1 - 2.75e10T + 2.31e20T^{2} \) |
| 73 | \( 1 - 3.22e10T + 3.13e20T^{2} \) |
| 79 | \( 1 + 2.43e9T + 7.47e20T^{2} \) |
| 83 | \( 1 + 1.20e10T + 1.28e21T^{2} \) |
| 89 | \( 1 + 4.44e9T + 2.77e21T^{2} \) |
| 97 | \( 1 + 2.04e10T + 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.68193435754841657255604354637, −12.26406802831175901985188697756, −10.81561993512749481374342606512, −9.824922830464044406537568554503, −8.380038696439269686947720158145, −7.64906595273599130507597497486, −5.30302606493196631508172375860, −4.64352600685496654204004490722, −2.34645732011858897521570874701, −0.839303104314245879140973879268,
0.839303104314245879140973879268, 2.34645732011858897521570874701, 4.64352600685496654204004490722, 5.30302606493196631508172375860, 7.64906595273599130507597497486, 8.380038696439269686947720158145, 9.824922830464044406537568554503, 10.81561993512749481374342606512, 12.26406802831175901985188697756, 13.68193435754841657255604354637