L(s) = 1 | + (−1.60 − 0.430i)2-s + (−1.08 − 1.35i)3-s + (0.661 + 0.382i)4-s + (−1.24 − 1.85i)5-s + (1.15 + 2.63i)6-s + (0.465 − 1.73i)7-s + (1.45 + 1.45i)8-s + (−0.661 + 2.92i)9-s + (1.20 + 3.51i)10-s + (3.12 − 1.80i)11-s + (−0.198 − 1.30i)12-s + (0.342 + 1.27i)13-s + (−1.49 + 2.59i)14-s + (−1.15 + 3.69i)15-s + (−2.47 − 4.28i)16-s + (−0.277 + 0.277i)17-s + ⋯ |
L(s) = 1 | + (−1.13 − 0.304i)2-s + (−0.624 − 0.781i)3-s + (0.330 + 0.191i)4-s + (−0.558 − 0.829i)5-s + (0.471 + 1.07i)6-s + (0.175 − 0.656i)7-s + (0.513 + 0.513i)8-s + (−0.220 + 0.975i)9-s + (0.381 + 1.11i)10-s + (0.942 − 0.544i)11-s + (−0.0573 − 0.377i)12-s + (0.0950 + 0.354i)13-s + (−0.399 + 0.692i)14-s + (−0.299 + 0.954i)15-s + (−0.618 − 1.07i)16-s + (−0.0671 + 0.0671i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.189266 - 0.309287i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.189266 - 0.309287i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.08 + 1.35i)T \) |
| 5 | \( 1 + (1.24 + 1.85i)T \) |
good | 2 | \( 1 + (1.60 + 0.430i)T + (1.73 + i)T^{2} \) |
| 7 | \( 1 + (-0.465 + 1.73i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-3.12 + 1.80i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.342 - 1.27i)T + (-11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (0.277 - 0.277i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.25iT - 19T^{2} \) |
| 23 | \( 1 + (-2.16 + 0.579i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-1.56 - 2.71i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.42 - 4.20i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.55 - 5.55i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.29 - 0.744i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.10 - 1.10i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (3.82 + 1.02i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (7.48 + 7.48i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.279 - 0.483i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.96 + 5.13i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.8 + 2.90i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 8.01iT - 71T^{2} \) |
| 73 | \( 1 + (1.29 - 1.29i)T - 73iT^{2} \) |
| 79 | \( 1 + (6.96 - 4.02i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.150 - 0.560i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 - 16.4T + 89T^{2} \) |
| 97 | \( 1 + (1.37 - 5.14i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.16550312091032499564447683183, −14.12787949575164915846621363109, −13.01599154683985898718344117318, −11.59618456214797386683551588260, −10.94373834891778675237181115080, −9.217580658652879587567557510424, −8.188763433535154635786609336300, −6.91173020135586799611166266099, −4.79838109536486840984948802532, −1.05222706323018633244862708778,
4.03074218264799297799391964867, 6.19018051018682540099364219384, 7.66167354741088512257800433577, 9.097425269889251913865302158348, 10.10714816390662001385579190722, 11.21034834923277374846623315088, 12.33813094589998815019163773622, 14.53344572241206494435041750329, 15.39920808406335687945735858078, 16.38834156846371629903760287786