L(s) = 1 | + (−1.60 − 0.430i)2-s + (−1.08 − 1.35i)3-s + (0.661 + 0.382i)4-s + (−1.24 − 1.85i)5-s + (1.15 + 2.63i)6-s + (0.465 − 1.73i)7-s + (1.45 + 1.45i)8-s + (−0.661 + 2.92i)9-s + (1.20 + 3.51i)10-s + (3.12 − 1.80i)11-s + (−0.198 − 1.30i)12-s + (0.342 + 1.27i)13-s + (−1.49 + 2.59i)14-s + (−1.15 + 3.69i)15-s + (−2.47 − 4.28i)16-s + (−0.277 + 0.277i)17-s + ⋯ |
L(s) = 1 | + (−1.13 − 0.304i)2-s + (−0.624 − 0.781i)3-s + (0.330 + 0.191i)4-s + (−0.558 − 0.829i)5-s + (0.471 + 1.07i)6-s + (0.175 − 0.656i)7-s + (0.513 + 0.513i)8-s + (−0.220 + 0.975i)9-s + (0.381 + 1.11i)10-s + (0.942 − 0.544i)11-s + (−0.0573 − 0.377i)12-s + (0.0950 + 0.354i)13-s + (−0.399 + 0.692i)14-s + (−0.299 + 0.954i)15-s + (−0.618 − 1.07i)16-s + (−0.0671 + 0.0671i)17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(−0.455+0.890i)Λ(2−s)
Λ(s)=(=(45s/2ΓC(s+1/2)L(s)(−0.455+0.890i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
−0.455+0.890i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(32,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1/2), −0.455+0.890i)
|
Particular Values
L(1) |
≈ |
0.189266−0.309287i |
L(21) |
≈ |
0.189266−0.309287i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.08+1.35i)T |
| 5 | 1+(1.24+1.85i)T |
good | 2 | 1+(1.60+0.430i)T+(1.73+i)T2 |
| 7 | 1+(−0.465+1.73i)T+(−6.06−3.5i)T2 |
| 11 | 1+(−3.12+1.80i)T+(5.5−9.52i)T2 |
| 13 | 1+(−0.342−1.27i)T+(−11.2+6.5i)T2 |
| 17 | 1+(0.277−0.277i)T−17iT2 |
| 19 | 1+6.25iT−19T2 |
| 23 | 1+(−2.16+0.579i)T+(19.9−11.5i)T2 |
| 29 | 1+(−1.56−2.71i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.42−4.20i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−5.55−5.55i)T+37iT2 |
| 41 | 1+(−1.29−0.744i)T+(20.5+35.5i)T2 |
| 43 | 1+(−4.10−1.10i)T+(37.2+21.5i)T2 |
| 47 | 1+(3.82+1.02i)T+(40.7+23.5i)T2 |
| 53 | 1+(7.48+7.48i)T+53iT2 |
| 59 | 1+(0.279−0.483i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.96+5.13i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−10.8+2.90i)T+(58.0−33.5i)T2 |
| 71 | 1−8.01iT−71T2 |
| 73 | 1+(1.29−1.29i)T−73iT2 |
| 79 | 1+(6.96−4.02i)T+(39.5−68.4i)T2 |
| 83 | 1+(0.150−0.560i)T+(−71.8−41.5i)T2 |
| 89 | 1−16.4T+89T2 |
| 97 | 1+(1.37−5.14i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.16550312091032499564447683183, −14.12787949575164915846621363109, −13.01599154683985898718344117318, −11.59618456214797386683551588260, −10.94373834891778675237181115080, −9.217580658652879587567557510424, −8.188763433535154635786609336300, −6.91173020135586799611166266099, −4.79838109536486840984948802532, −1.05222706323018633244862708778,
4.03074218264799297799391964867, 6.19018051018682540099364219384, 7.66167354741088512257800433577, 9.097425269889251913865302158348, 10.10714816390662001385579190722, 11.21034834923277374846623315088, 12.33813094589998815019163773622, 14.53344572241206494435041750329, 15.39920808406335687945735858078, 16.38834156846371629903760287786