Properties

Label 2-45-15.14-c2-0-0
Degree $2$
Conductor $45$
Sign $0.387 - 0.921i$
Analytic cond. $1.22616$
Root an. cond. $1.10732$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.64·2-s + 3.00·4-s + (2.64 + 4.24i)5-s + 11.2i·7-s + 2.64·8-s + (−7.00 − 11.2i)10-s + 4.24i·11-s − 11.2i·13-s − 29.6i·14-s − 18.9·16-s − 10.5·17-s + 20·19-s + (7.93 + 12.7i)20-s − 11.2i·22-s + 5.29·23-s + ⋯
L(s)  = 1  − 1.32·2-s + 0.750·4-s + (0.529 + 0.848i)5-s + 1.60i·7-s + 0.330·8-s + (−0.700 − 1.12i)10-s + 0.385i·11-s − 0.863i·13-s − 2.12i·14-s − 1.18·16-s − 0.622·17-s + 1.05·19-s + (0.396 + 0.636i)20-s − 0.510i·22-s + 0.230·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 - 0.921i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.387 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $0.387 - 0.921i$
Analytic conductor: \(1.22616\)
Root analytic conductor: \(1.10732\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (44, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :1),\ 0.387 - 0.921i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.504031 + 0.334956i\)
\(L(\frac12)\) \(\approx\) \(0.504031 + 0.334956i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-2.64 - 4.24i)T \)
good2 \( 1 + 2.64T + 4T^{2} \)
7 \( 1 - 11.2iT - 49T^{2} \)
11 \( 1 - 4.24iT - 121T^{2} \)
13 \( 1 + 11.2iT - 169T^{2} \)
17 \( 1 + 10.5T + 289T^{2} \)
19 \( 1 - 20T + 361T^{2} \)
23 \( 1 - 5.29T + 529T^{2} \)
29 \( 1 + 8.48iT - 841T^{2} \)
31 \( 1 - 26T + 961T^{2} \)
37 \( 1 + 33.6iT - 1.36e3T^{2} \)
41 \( 1 + 55.1iT - 1.68e3T^{2} \)
43 \( 1 + 22.4iT - 1.84e3T^{2} \)
47 \( 1 - 21.1T + 2.20e3T^{2} \)
53 \( 1 - 84.6T + 2.80e3T^{2} \)
59 \( 1 - 46.6iT - 3.48e3T^{2} \)
61 \( 1 + 22T + 3.72e3T^{2} \)
67 \( 1 - 89.7iT - 4.48e3T^{2} \)
71 \( 1 + 50.9iT - 5.04e3T^{2} \)
73 \( 1 + 67.3iT - 5.32e3T^{2} \)
79 \( 1 - 14T + 6.24e3T^{2} \)
83 \( 1 + 74.0T + 6.88e3T^{2} \)
89 \( 1 - 89.0iT - 7.92e3T^{2} \)
97 \( 1 + 22.4iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.84101570607985971672634707062, −15.05312385879001427975443678095, −13.56567886244976263444139814032, −12.00062279755064147655709038920, −10.70126289991570952133228059111, −9.633456267795868645512788391654, −8.674943325615016723439917353331, −7.24622060205251586104663343834, −5.63289825751473972467059571519, −2.42513564231247307750226965335, 1.11221971718424207584124412614, 4.53115976407903653408807930647, 6.82984690131631970870083658319, 8.125213132328614323707477937337, 9.336063511002016076021855870919, 10.22482247917731868148818951590, 11.43854506719165007793598433310, 13.33469185669879375445052312189, 13.94532687656695695115507642992, 16.09078003932604584499458470601

Graph of the $Z$-function along the critical line