Properties

Label 2-45-15.14-c2-0-0
Degree 22
Conductor 4545
Sign 0.3870.921i0.387 - 0.921i
Analytic cond. 1.226161.22616
Root an. cond. 1.107321.10732
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.64·2-s + 3.00·4-s + (2.64 + 4.24i)5-s + 11.2i·7-s + 2.64·8-s + (−7.00 − 11.2i)10-s + 4.24i·11-s − 11.2i·13-s − 29.6i·14-s − 18.9·16-s − 10.5·17-s + 20·19-s + (7.93 + 12.7i)20-s − 11.2i·22-s + 5.29·23-s + ⋯
L(s)  = 1  − 1.32·2-s + 0.750·4-s + (0.529 + 0.848i)5-s + 1.60i·7-s + 0.330·8-s + (−0.700 − 1.12i)10-s + 0.385i·11-s − 0.863i·13-s − 2.12i·14-s − 1.18·16-s − 0.622·17-s + 1.05·19-s + (0.396 + 0.636i)20-s − 0.510i·22-s + 0.230·23-s + ⋯

Functional equation

Λ(s)=(45s/2ΓC(s)L(s)=((0.3870.921i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 - 0.921i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(45s/2ΓC(s+1)L(s)=((0.3870.921i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.387 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 4545    =    3253^{2} \cdot 5
Sign: 0.3870.921i0.387 - 0.921i
Analytic conductor: 1.226161.22616
Root analytic conductor: 1.107321.10732
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ45(44,)\chi_{45} (44, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 45, ( :1), 0.3870.921i)(2,\ 45,\ (\ :1),\ 0.387 - 0.921i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.504031+0.334956i0.504031 + 0.334956i
L(12)L(\frac12) \approx 0.504031+0.334956i0.504031 + 0.334956i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1+(2.644.24i)T 1 + (-2.64 - 4.24i)T
good2 1+2.64T+4T2 1 + 2.64T + 4T^{2}
7 111.2iT49T2 1 - 11.2iT - 49T^{2}
11 14.24iT121T2 1 - 4.24iT - 121T^{2}
13 1+11.2iT169T2 1 + 11.2iT - 169T^{2}
17 1+10.5T+289T2 1 + 10.5T + 289T^{2}
19 120T+361T2 1 - 20T + 361T^{2}
23 15.29T+529T2 1 - 5.29T + 529T^{2}
29 1+8.48iT841T2 1 + 8.48iT - 841T^{2}
31 126T+961T2 1 - 26T + 961T^{2}
37 1+33.6iT1.36e3T2 1 + 33.6iT - 1.36e3T^{2}
41 1+55.1iT1.68e3T2 1 + 55.1iT - 1.68e3T^{2}
43 1+22.4iT1.84e3T2 1 + 22.4iT - 1.84e3T^{2}
47 121.1T+2.20e3T2 1 - 21.1T + 2.20e3T^{2}
53 184.6T+2.80e3T2 1 - 84.6T + 2.80e3T^{2}
59 146.6iT3.48e3T2 1 - 46.6iT - 3.48e3T^{2}
61 1+22T+3.72e3T2 1 + 22T + 3.72e3T^{2}
67 189.7iT4.48e3T2 1 - 89.7iT - 4.48e3T^{2}
71 1+50.9iT5.04e3T2 1 + 50.9iT - 5.04e3T^{2}
73 1+67.3iT5.32e3T2 1 + 67.3iT - 5.32e3T^{2}
79 114T+6.24e3T2 1 - 14T + 6.24e3T^{2}
83 1+74.0T+6.88e3T2 1 + 74.0T + 6.88e3T^{2}
89 189.0iT7.92e3T2 1 - 89.0iT - 7.92e3T^{2}
97 1+22.4iT9.40e3T2 1 + 22.4iT - 9.40e3T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.84101570607985971672634707062, −15.05312385879001427975443678095, −13.56567886244976263444139814032, −12.00062279755064147655709038920, −10.70126289991570952133228059111, −9.633456267795868645512788391654, −8.674943325615016723439917353331, −7.24622060205251586104663343834, −5.63289825751473972467059571519, −2.42513564231247307750226965335, 1.11221971718424207584124412614, 4.53115976407903653408807930647, 6.82984690131631970870083658319, 8.125213132328614323707477937337, 9.336063511002016076021855870919, 10.22482247917731868148818951590, 11.43854506719165007793598433310, 13.33469185669879375445052312189, 13.94532687656695695115507642992, 16.09078003932604584499458470601

Graph of the ZZ-function along the critical line