L(s) = 1 | − 2.64·2-s + 3.00·4-s + (2.64 + 4.24i)5-s + 11.2i·7-s + 2.64·8-s + (−7.00 − 11.2i)10-s + 4.24i·11-s − 11.2i·13-s − 29.6i·14-s − 18.9·16-s − 10.5·17-s + 20·19-s + (7.93 + 12.7i)20-s − 11.2i·22-s + 5.29·23-s + ⋯ |
L(s) = 1 | − 1.32·2-s + 0.750·4-s + (0.529 + 0.848i)5-s + 1.60i·7-s + 0.330·8-s + (−0.700 − 1.12i)10-s + 0.385i·11-s − 0.863i·13-s − 2.12i·14-s − 1.18·16-s − 0.622·17-s + 1.05·19-s + (0.396 + 0.636i)20-s − 0.510i·22-s + 0.230·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 - 0.921i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.387 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.504031 + 0.334956i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.504031 + 0.334956i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.64 - 4.24i)T \) |
good | 2 | \( 1 + 2.64T + 4T^{2} \) |
| 7 | \( 1 - 11.2iT - 49T^{2} \) |
| 11 | \( 1 - 4.24iT - 121T^{2} \) |
| 13 | \( 1 + 11.2iT - 169T^{2} \) |
| 17 | \( 1 + 10.5T + 289T^{2} \) |
| 19 | \( 1 - 20T + 361T^{2} \) |
| 23 | \( 1 - 5.29T + 529T^{2} \) |
| 29 | \( 1 + 8.48iT - 841T^{2} \) |
| 31 | \( 1 - 26T + 961T^{2} \) |
| 37 | \( 1 + 33.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 55.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 22.4iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 21.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 84.6T + 2.80e3T^{2} \) |
| 59 | \( 1 - 46.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 22T + 3.72e3T^{2} \) |
| 67 | \( 1 - 89.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 50.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 67.3iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 14T + 6.24e3T^{2} \) |
| 83 | \( 1 + 74.0T + 6.88e3T^{2} \) |
| 89 | \( 1 - 89.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 22.4iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.84101570607985971672634707062, −15.05312385879001427975443678095, −13.56567886244976263444139814032, −12.00062279755064147655709038920, −10.70126289991570952133228059111, −9.633456267795868645512788391654, −8.674943325615016723439917353331, −7.24622060205251586104663343834, −5.63289825751473972467059571519, −2.42513564231247307750226965335,
1.11221971718424207584124412614, 4.53115976407903653408807930647, 6.82984690131631970870083658319, 8.125213132328614323707477937337, 9.336063511002016076021855870919, 10.22482247917731868148818951590, 11.43854506719165007793598433310, 13.33469185669879375445052312189, 13.94532687656695695115507642992, 16.09078003932604584499458470601