L(s) = 1 | + (0.668 + 1.15i)2-s + (−0.320 − 2.98i)3-s + (1.10 − 1.91i)4-s + (4.41 + 2.33i)5-s + (3.24 − 2.36i)6-s + (−7.10 + 4.10i)7-s + 8.30·8-s + (−8.79 + 1.91i)9-s + (0.244 + 6.68i)10-s + (−5.67 + 3.27i)11-s + (−6.06 − 2.68i)12-s + (−1.29 − 0.749i)13-s + (−9.50 − 5.49i)14-s + (5.56 − 13.9i)15-s + (1.13 + 1.97i)16-s + 15.1·17-s + ⋯ |
L(s) = 1 | + (0.334 + 0.579i)2-s + (−0.106 − 0.994i)3-s + (0.276 − 0.478i)4-s + (0.883 + 0.467i)5-s + (0.540 − 0.394i)6-s + (−1.01 + 0.586i)7-s + 1.03·8-s + (−0.977 + 0.212i)9-s + (0.0244 + 0.668i)10-s + (−0.515 + 0.297i)11-s + (−0.505 − 0.223i)12-s + (−0.0998 − 0.0576i)13-s + (−0.679 − 0.392i)14-s + (0.370 − 0.928i)15-s + (0.0710 + 0.123i)16-s + 0.889·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.35022 - 0.0663292i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35022 - 0.0663292i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.320 + 2.98i)T \) |
| 5 | \( 1 + (-4.41 - 2.33i)T \) |
good | 2 | \( 1 + (-0.668 - 1.15i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (7.10 - 4.10i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (5.67 - 3.27i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (1.29 + 0.749i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 15.1T + 289T^{2} \) |
| 19 | \( 1 + 25.9T + 361T^{2} \) |
| 23 | \( 1 + (11.6 - 20.1i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-6.96 + 4.02i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-22.5 + 38.9i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 62.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-9.97 - 5.75i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-36.9 + 21.3i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-8.25 - 14.2i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 66.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-0.373 - 0.215i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-15.7 - 27.3i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (83.1 + 47.9i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 84.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 63.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-9.06 - 15.7i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-50.4 - 87.4i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 86.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (59.7 - 34.5i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.42955400021147141409651807485, −14.37795540010183591004370900837, −13.39634089776840289928643080861, −12.46333931691205312137833912488, −10.79282436270445560020480082005, −9.570212570434718229995477318692, −7.59979246113986030873425338546, −6.32653310458610361001259408018, −5.69629086903218768537891853689, −2.32491768760797074064579614219,
3.00557186732055200284956037568, 4.57551088411597430169418342083, 6.33927323467611824228149438624, 8.452766205842448678441882654944, 10.02032034144418641537961358714, 10.59556015753417140654719445380, 12.22778319945829412963398452829, 13.17377282573798993649088154887, 14.25731778201918151919542591099, 15.97725831242608645657249393281