L(s) = 1 | + (0.668 + 1.15i)2-s + (−0.320 − 2.98i)3-s + (1.10 − 1.91i)4-s + (4.41 + 2.33i)5-s + (3.24 − 2.36i)6-s + (−7.10 + 4.10i)7-s + 8.30·8-s + (−8.79 + 1.91i)9-s + (0.244 + 6.68i)10-s + (−5.67 + 3.27i)11-s + (−6.06 − 2.68i)12-s + (−1.29 − 0.749i)13-s + (−9.50 − 5.49i)14-s + (5.56 − 13.9i)15-s + (1.13 + 1.97i)16-s + 15.1·17-s + ⋯ |
L(s) = 1 | + (0.334 + 0.579i)2-s + (−0.106 − 0.994i)3-s + (0.276 − 0.478i)4-s + (0.883 + 0.467i)5-s + (0.540 − 0.394i)6-s + (−1.01 + 0.586i)7-s + 1.03·8-s + (−0.977 + 0.212i)9-s + (0.0244 + 0.668i)10-s + (−0.515 + 0.297i)11-s + (−0.505 − 0.223i)12-s + (−0.0998 − 0.0576i)13-s + (−0.679 − 0.392i)14-s + (0.370 − 0.928i)15-s + (0.0710 + 0.123i)16-s + 0.889·17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.995+0.0980i)Λ(3−s)
Λ(s)=(=(45s/2ΓC(s+1)L(s)(0.995+0.0980i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.995+0.0980i
|
Analytic conductor: |
1.22616 |
Root analytic conductor: |
1.10732 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1), 0.995+0.0980i)
|
Particular Values
L(23) |
≈ |
1.35022−0.0663292i |
L(21) |
≈ |
1.35022−0.0663292i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.320+2.98i)T |
| 5 | 1+(−4.41−2.33i)T |
good | 2 | 1+(−0.668−1.15i)T+(−2+3.46i)T2 |
| 7 | 1+(7.10−4.10i)T+(24.5−42.4i)T2 |
| 11 | 1+(5.67−3.27i)T+(60.5−104.i)T2 |
| 13 | 1+(1.29+0.749i)T+(84.5+146.i)T2 |
| 17 | 1−15.1T+289T2 |
| 19 | 1+25.9T+361T2 |
| 23 | 1+(11.6−20.1i)T+(−264.5−458.i)T2 |
| 29 | 1+(−6.96+4.02i)T+(420.5−728.i)T2 |
| 31 | 1+(−22.5+38.9i)T+(−480.5−832.i)T2 |
| 37 | 1+62.8iT−1.36e3T2 |
| 41 | 1+(−9.97−5.75i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(−36.9+21.3i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(−8.25−14.2i)T+(−1.10e3+1.91e3i)T2 |
| 53 | 1+66.0T+2.80e3T2 |
| 59 | 1+(−0.373−0.215i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−15.7−27.3i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(83.1+47.9i)T+(2.24e3+3.88e3i)T2 |
| 71 | 1+84.2iT−5.04e3T2 |
| 73 | 1−63.5iT−5.32e3T2 |
| 79 | 1+(−9.06−15.7i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(−50.4−87.4i)T+(−3.44e3+5.96e3i)T2 |
| 89 | 1−86.3iT−7.92e3T2 |
| 97 | 1+(59.7−34.5i)T+(4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.42955400021147141409651807485, −14.37795540010183591004370900837, −13.39634089776840289928643080861, −12.46333931691205312137833912488, −10.79282436270445560020480082005, −9.570212570434718229995477318692, −7.59979246113986030873425338546, −6.32653310458610361001259408018, −5.69629086903218768537891853689, −2.32491768760797074064579614219,
3.00557186732055200284956037568, 4.57551088411597430169418342083, 6.33927323467611824228149438624, 8.452766205842448678441882654944, 10.02032034144418641537961358714, 10.59556015753417140654719445380, 12.22778319945829412963398452829, 13.17377282573798993649088154887, 14.25731778201918151919542591099, 15.97725831242608645657249393281