Properties

Label 2-45-45.14-c2-0-6
Degree $2$
Conductor $45$
Sign $0.995 + 0.0980i$
Analytic cond. $1.22616$
Root an. cond. $1.10732$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.668 + 1.15i)2-s + (−0.320 − 2.98i)3-s + (1.10 − 1.91i)4-s + (4.41 + 2.33i)5-s + (3.24 − 2.36i)6-s + (−7.10 + 4.10i)7-s + 8.30·8-s + (−8.79 + 1.91i)9-s + (0.244 + 6.68i)10-s + (−5.67 + 3.27i)11-s + (−6.06 − 2.68i)12-s + (−1.29 − 0.749i)13-s + (−9.50 − 5.49i)14-s + (5.56 − 13.9i)15-s + (1.13 + 1.97i)16-s + 15.1·17-s + ⋯
L(s)  = 1  + (0.334 + 0.579i)2-s + (−0.106 − 0.994i)3-s + (0.276 − 0.478i)4-s + (0.883 + 0.467i)5-s + (0.540 − 0.394i)6-s + (−1.01 + 0.586i)7-s + 1.03·8-s + (−0.977 + 0.212i)9-s + (0.0244 + 0.668i)10-s + (−0.515 + 0.297i)11-s + (−0.505 − 0.223i)12-s + (−0.0998 − 0.0576i)13-s + (−0.679 − 0.392i)14-s + (0.370 − 0.928i)15-s + (0.0710 + 0.123i)16-s + 0.889·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $0.995 + 0.0980i$
Analytic conductor: \(1.22616\)
Root analytic conductor: \(1.10732\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (14, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :1),\ 0.995 + 0.0980i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.35022 - 0.0663292i\)
\(L(\frac12)\) \(\approx\) \(1.35022 - 0.0663292i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.320 + 2.98i)T \)
5 \( 1 + (-4.41 - 2.33i)T \)
good2 \( 1 + (-0.668 - 1.15i)T + (-2 + 3.46i)T^{2} \)
7 \( 1 + (7.10 - 4.10i)T + (24.5 - 42.4i)T^{2} \)
11 \( 1 + (5.67 - 3.27i)T + (60.5 - 104. i)T^{2} \)
13 \( 1 + (1.29 + 0.749i)T + (84.5 + 146. i)T^{2} \)
17 \( 1 - 15.1T + 289T^{2} \)
19 \( 1 + 25.9T + 361T^{2} \)
23 \( 1 + (11.6 - 20.1i)T + (-264.5 - 458. i)T^{2} \)
29 \( 1 + (-6.96 + 4.02i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (-22.5 + 38.9i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + 62.8iT - 1.36e3T^{2} \)
41 \( 1 + (-9.97 - 5.75i)T + (840.5 + 1.45e3i)T^{2} \)
43 \( 1 + (-36.9 + 21.3i)T + (924.5 - 1.60e3i)T^{2} \)
47 \( 1 + (-8.25 - 14.2i)T + (-1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + 66.0T + 2.80e3T^{2} \)
59 \( 1 + (-0.373 - 0.215i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-15.7 - 27.3i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (83.1 + 47.9i)T + (2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 + 84.2iT - 5.04e3T^{2} \)
73 \( 1 - 63.5iT - 5.32e3T^{2} \)
79 \( 1 + (-9.06 - 15.7i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (-50.4 - 87.4i)T + (-3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 - 86.3iT - 7.92e3T^{2} \)
97 \( 1 + (59.7 - 34.5i)T + (4.70e3 - 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.42955400021147141409651807485, −14.37795540010183591004370900837, −13.39634089776840289928643080861, −12.46333931691205312137833912488, −10.79282436270445560020480082005, −9.570212570434718229995477318692, −7.59979246113986030873425338546, −6.32653310458610361001259408018, −5.69629086903218768537891853689, −2.32491768760797074064579614219, 3.00557186732055200284956037568, 4.57551088411597430169418342083, 6.33927323467611824228149438624, 8.452766205842448678441882654944, 10.02032034144418641537961358714, 10.59556015753417140654719445380, 12.22778319945829412963398452829, 13.17377282573798993649088154887, 14.25731778201918151919542591099, 15.97725831242608645657249393281

Graph of the $Z$-function along the critical line