L(s) = 1 | + (1.14 − 1.98i)2-s + (−0.182 − 2.99i)3-s + (−0.629 − 1.09i)4-s + (0.662 + 4.95i)5-s + (−6.15 − 3.07i)6-s + (−6.04 − 3.49i)7-s + 6.28·8-s + (−8.93 + 1.09i)9-s + (10.6 + 4.36i)10-s + (15.8 + 9.12i)11-s + (−3.15 + 2.08i)12-s + (−3.66 + 2.11i)13-s + (−13.8 + 8.00i)14-s + (14.7 − 2.88i)15-s + (9.72 − 16.8i)16-s − 17.3·17-s + ⋯ |
L(s) = 1 | + (0.573 − 0.993i)2-s + (−0.0607 − 0.998i)3-s + (−0.157 − 0.272i)4-s + (0.132 + 0.991i)5-s + (−1.02 − 0.511i)6-s + (−0.863 − 0.498i)7-s + 0.785·8-s + (−0.992 + 0.121i)9-s + (1.06 + 0.436i)10-s + (1.43 + 0.829i)11-s + (−0.262 + 0.173i)12-s + (−0.282 + 0.162i)13-s + (−0.990 + 0.571i)14-s + (0.981 − 0.192i)15-s + (0.607 − 1.05i)16-s − 1.01·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0797 + 0.996i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0797 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.03825 - 0.958541i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03825 - 0.958541i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.182 + 2.99i)T \) |
| 5 | \( 1 + (-0.662 - 4.95i)T \) |
good | 2 | \( 1 + (-1.14 + 1.98i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (6.04 + 3.49i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-15.8 - 9.12i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (3.66 - 2.11i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 17.3T + 289T^{2} \) |
| 19 | \( 1 + 3.96T + 361T^{2} \) |
| 23 | \( 1 + (-0.287 - 0.498i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (18.1 + 10.4i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (16.7 + 28.9i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 21.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-44.1 + 25.4i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (7.15 + 4.13i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (7.57 - 13.1i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 24.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-43.1 + 24.9i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (31.4 - 54.5i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-103. + 59.7i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 66.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 48.9iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-58.9 + 102. i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-3.66 + 6.34i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 100. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (3.59 + 2.07i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.83536749203996603097053328467, −13.79819686660702695683996649980, −12.94675891028570479088422486010, −11.88434090759310527072376920214, −10.98739583367702718775557401462, −9.581696439629295290409110338640, −7.32877492292275247049451840253, −6.50164658672333376597082494318, −3.85005594779752640872282870343, −2.20289567176270860102901922860,
4.02694104350437408879623101922, 5.42289191754944835637019237260, 6.46214329264563744390051514449, 8.641846356701150683447544518937, 9.514069041515805454718697090701, 11.15626058296340910717159468686, 12.65569011986903993669024678010, 13.91441762562648086121266426401, 14.92939774509834665609479529192, 16.00512457137201257526767432009