L(s) = 1 | + (1.14 − 1.98i)2-s + (−0.182 − 2.99i)3-s + (−0.629 − 1.09i)4-s + (0.662 + 4.95i)5-s + (−6.15 − 3.07i)6-s + (−6.04 − 3.49i)7-s + 6.28·8-s + (−8.93 + 1.09i)9-s + (10.6 + 4.36i)10-s + (15.8 + 9.12i)11-s + (−3.15 + 2.08i)12-s + (−3.66 + 2.11i)13-s + (−13.8 + 8.00i)14-s + (14.7 − 2.88i)15-s + (9.72 − 16.8i)16-s − 17.3·17-s + ⋯ |
L(s) = 1 | + (0.573 − 0.993i)2-s + (−0.0607 − 0.998i)3-s + (−0.157 − 0.272i)4-s + (0.132 + 0.991i)5-s + (−1.02 − 0.511i)6-s + (−0.863 − 0.498i)7-s + 0.785·8-s + (−0.992 + 0.121i)9-s + (1.06 + 0.436i)10-s + (1.43 + 0.829i)11-s + (−0.262 + 0.173i)12-s + (−0.282 + 0.162i)13-s + (−0.990 + 0.571i)14-s + (0.981 − 0.192i)15-s + (0.607 − 1.05i)16-s − 1.01·17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.0797+0.996i)Λ(3−s)
Λ(s)=(=(45s/2ΓC(s+1)L(s)(0.0797+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.0797+0.996i
|
Analytic conductor: |
1.22616 |
Root analytic conductor: |
1.10732 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1), 0.0797+0.996i)
|
Particular Values
L(23) |
≈ |
1.03825−0.958541i |
L(21) |
≈ |
1.03825−0.958541i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.182+2.99i)T |
| 5 | 1+(−0.662−4.95i)T |
good | 2 | 1+(−1.14+1.98i)T+(−2−3.46i)T2 |
| 7 | 1+(6.04+3.49i)T+(24.5+42.4i)T2 |
| 11 | 1+(−15.8−9.12i)T+(60.5+104.i)T2 |
| 13 | 1+(3.66−2.11i)T+(84.5−146.i)T2 |
| 17 | 1+17.3T+289T2 |
| 19 | 1+3.96T+361T2 |
| 23 | 1+(−0.287−0.498i)T+(−264.5+458.i)T2 |
| 29 | 1+(18.1+10.4i)T+(420.5+728.i)T2 |
| 31 | 1+(16.7+28.9i)T+(−480.5+832.i)T2 |
| 37 | 1−21.4iT−1.36e3T2 |
| 41 | 1+(−44.1+25.4i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(7.15+4.13i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(7.57−13.1i)T+(−1.10e3−1.91e3i)T2 |
| 53 | 1−24.5T+2.80e3T2 |
| 59 | 1+(−43.1+24.9i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(31.4−54.5i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−103.+59.7i)T+(2.24e3−3.88e3i)T2 |
| 71 | 1−66.8iT−5.04e3T2 |
| 73 | 1+48.9iT−5.32e3T2 |
| 79 | 1+(−58.9+102.i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−3.66+6.34i)T+(−3.44e3−5.96e3i)T2 |
| 89 | 1−100.iT−7.92e3T2 |
| 97 | 1+(3.59+2.07i)T+(4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.83536749203996603097053328467, −13.79819686660702695683996649980, −12.94675891028570479088422486010, −11.88434090759310527072376920214, −10.98739583367702718775557401462, −9.581696439629295290409110338640, −7.32877492292275247049451840253, −6.50164658672333376597082494318, −3.85005594779752640872282870343, −2.20289567176270860102901922860,
4.02694104350437408879623101922, 5.42289191754944835637019237260, 6.46214329264563744390051514449, 8.641846356701150683447544518937, 9.514069041515805454718697090701, 11.15626058296340910717159468686, 12.65569011986903993669024678010, 13.91441762562648086121266426401, 14.92939774509834665609479529192, 16.00512457137201257526767432009