L(s) = 1 | + (2.65 − 4.60i)2-s + (−5.19 + 0.153i)3-s + (−10.1 − 17.5i)4-s + (2.5 + 4.33i)5-s + (−13.0 + 24.3i)6-s + (6.71 − 11.6i)7-s − 65.1·8-s + (26.9 − 1.59i)9-s + 26.5·10-s + (23.4 − 40.6i)11-s + (55.2 + 89.5i)12-s + (18.0 + 31.2i)13-s + (−35.7 − 61.8i)14-s + (−13.6 − 22.1i)15-s + (−92.1 + 159. i)16-s − 54.6·17-s + ⋯ |
L(s) = 1 | + (0.939 − 1.62i)2-s + (−0.999 + 0.0295i)3-s + (−1.26 − 2.19i)4-s + (0.223 + 0.387i)5-s + (−0.891 + 1.65i)6-s + (0.362 − 0.628i)7-s − 2.87·8-s + (0.998 − 0.0589i)9-s + 0.840·10-s + (0.643 − 1.11i)11-s + (1.33 + 2.15i)12-s + (0.385 + 0.667i)13-s + (−0.681 − 1.18i)14-s + (−0.234 − 0.380i)15-s + (−1.43 + 2.49i)16-s − 0.779·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.396i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.917 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.309022 - 1.49337i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.309022 - 1.49337i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (5.19 - 0.153i)T \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
good | 2 | \( 1 + (-2.65 + 4.60i)T + (-4 - 6.92i)T^{2} \) |
| 7 | \( 1 + (-6.71 + 11.6i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-23.4 + 40.6i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-18.0 - 31.2i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 54.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 111.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-17.9 - 31.1i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (29.0 - 50.3i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-147. - 256. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 53.0T + 5.06e4T^{2} \) |
| 41 | \( 1 + (64.1 + 111. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-82.0 + 142. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (43.9 - 76.0i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + 479.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (317. + 550. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (24.0 - 41.5i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-14.4 - 25.0i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 576.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 835.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-101. + 176. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (232. - 402. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 - 993.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (440. - 763. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.11572585916576784331177178072, −13.62977116688768299540552849609, −12.18924393107212629598743982355, −11.24650692637445466138219134879, −10.73036028606387546550132738292, −9.380429503598857630621989420344, −6.48275467843947711513557146905, −5.05609208531751942197657172437, −3.63562525427623859740524397664, −1.22881869830455183534048733581,
4.43768604408612956409558559039, 5.46780537500053338123778032373, 6.55854191082922439452323150766, 7.85736625132148694176426423102, 9.442783227206022293013836091364, 11.70001814833352046534302903479, 12.62069908224304129413058880819, 13.60695329385530151164106633994, 15.06746573884330900338676853022, 15.67083106731892712548110947257