L(s) = 1 | + (1.09 + 1.90i)2-s + (0.206 − 5.19i)3-s + (1.59 − 2.75i)4-s + (2.5 − 4.33i)5-s + (10.0 − 5.30i)6-s + (−1.38 − 2.39i)7-s + 24.5·8-s + (−26.9 − 2.14i)9-s + 10.9·10-s + (26.3 + 45.6i)11-s + (−13.9 − 8.83i)12-s + (−10.2 + 17.7i)13-s + (3.03 − 5.25i)14-s + (−21.9 − 13.8i)15-s + (14.1 + 24.5i)16-s + 3.66·17-s + ⋯ |
L(s) = 1 | + (0.387 + 0.671i)2-s + (0.0396 − 0.999i)3-s + (0.199 − 0.344i)4-s + (0.223 − 0.387i)5-s + (0.686 − 0.360i)6-s + (−0.0746 − 0.129i)7-s + 1.08·8-s + (−0.996 − 0.0792i)9-s + 0.346·10-s + (0.721 + 1.25i)11-s + (−0.336 − 0.212i)12-s + (−0.218 + 0.377i)13-s + (0.0579 − 0.100i)14-s + (−0.378 − 0.238i)15-s + (0.221 + 0.384i)16-s + 0.0522·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 + 0.415i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.909 + 0.415i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.71810 - 0.373779i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.71810 - 0.373779i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.206 + 5.19i)T \) |
| 5 | \( 1 + (-2.5 + 4.33i)T \) |
good | 2 | \( 1 + (-1.09 - 1.90i)T + (-4 + 6.92i)T^{2} \) |
| 7 | \( 1 + (1.38 + 2.39i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-26.3 - 45.6i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (10.2 - 17.7i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 3.66T + 4.91e3T^{2} \) |
| 19 | \( 1 + 95.6T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-44.9 + 77.8i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-113. - 197. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (139. - 241. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 273.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (32.4 - 56.1i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (209. + 362. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (69.3 + 120. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 197.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (370. - 641. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (244. + 423. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-205. + 356. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 310.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 51.0T + 3.89e5T^{2} \) |
| 79 | \( 1 + (603. + 1.04e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (452. + 783. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 663.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-362. - 628. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.92371691741077839145703605521, −14.29052028288602535521028124400, −13.04831087746018004945942824464, −12.11053118037940753693702868441, −10.50790362395910676652623712666, −8.847603986805785603106411855655, −7.20449222918766719212337161386, −6.43465433743900586591734761852, −4.81803938443778568158602239684, −1.72566718424647857131171102457,
2.86768336609205364704136084944, 4.16526031730662197024544977288, 6.06396779030131570308690092959, 8.128459750527649550931073912078, 9.612340543406932584995769846780, 10.93143290652637082849829971485, 11.54574265666053132958820189518, 13.09419552675260514150801298924, 14.21573323287484437585498771984, 15.35876474258603730487113294729