L(s) = 1 | + (3.75 + 6.50i)2-s + (−3.49 + 8.29i)3-s + (−20.1 + 34.9i)4-s + (22.9 − 10.0i)5-s + (−67.0 + 8.43i)6-s + (60.4 − 34.9i)7-s − 182.·8-s + (−56.6 − 57.9i)9-s + (151. + 111. i)10-s + (−45.1 + 26.0i)11-s + (−219. − 289. i)12-s + (104. + 60.2i)13-s + (454. + 262. i)14-s + (3.08 + 224. i)15-s + (−363. − 629. i)16-s + 80.3·17-s + ⋯ |
L(s) = 1 | + (0.938 + 1.62i)2-s + (−0.387 + 0.921i)3-s + (−1.26 + 2.18i)4-s + (0.916 − 0.400i)5-s + (−1.86 + 0.234i)6-s + (1.23 − 0.712i)7-s − 2.85·8-s + (−0.699 − 0.715i)9-s + (1.51 + 1.11i)10-s + (−0.373 + 0.215i)11-s + (−1.52 − 2.00i)12-s + (0.617 + 0.356i)13-s + (2.31 + 1.33i)14-s + (0.0136 + 0.999i)15-s + (−1.42 − 2.45i)16-s + 0.278·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.208i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.978 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.240770 + 2.28324i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.240770 + 2.28324i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (3.49 - 8.29i)T \) |
| 5 | \( 1 + (-22.9 + 10.0i)T \) |
good | 2 | \( 1 + (-3.75 - 6.50i)T + (-8 + 13.8i)T^{2} \) |
| 7 | \( 1 + (-60.4 + 34.9i)T + (1.20e3 - 2.07e3i)T^{2} \) |
| 11 | \( 1 + (45.1 - 26.0i)T + (7.32e3 - 1.26e4i)T^{2} \) |
| 13 | \( 1 + (-104. - 60.2i)T + (1.42e4 + 2.47e4i)T^{2} \) |
| 17 | \( 1 - 80.3T + 8.35e4T^{2} \) |
| 19 | \( 1 + 254.T + 1.30e5T^{2} \) |
| 23 | \( 1 + (125. - 216. i)T + (-1.39e5 - 2.42e5i)T^{2} \) |
| 29 | \( 1 + (-250. + 144. i)T + (3.53e5 - 6.12e5i)T^{2} \) |
| 31 | \( 1 + (11.0 - 19.1i)T + (-4.61e5 - 7.99e5i)T^{2} \) |
| 37 | \( 1 + 2.47e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 + (-421. - 243. i)T + (1.41e6 + 2.44e6i)T^{2} \) |
| 43 | \( 1 + (-86.4 + 49.9i)T + (1.70e6 - 2.96e6i)T^{2} \) |
| 47 | \( 1 + (-1.73e3 - 3.01e3i)T + (-2.43e6 + 4.22e6i)T^{2} \) |
| 53 | \( 1 + 2.91e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + (1.51e3 + 875. i)T + (6.05e6 + 1.04e7i)T^{2} \) |
| 61 | \( 1 + (2.79e3 + 4.83e3i)T + (-6.92e6 + 1.19e7i)T^{2} \) |
| 67 | \( 1 + (-3.32e3 - 1.92e3i)T + (1.00e7 + 1.74e7i)T^{2} \) |
| 71 | \( 1 + 988. iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 6.01e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + (31.6 + 54.8i)T + (-1.94e7 + 3.37e7i)T^{2} \) |
| 83 | \( 1 + (-727. - 1.26e3i)T + (-2.37e7 + 4.11e7i)T^{2} \) |
| 89 | \( 1 - 1.28e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-6.34e3 + 3.66e3i)T + (4.42e7 - 7.66e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.62108589379416650812113599531, −14.43513664348043460110499658374, −13.91047300660016031820664261144, −12.55934112505639339389079762316, −10.87931229144250073708701332372, −9.168118464528785006914333212985, −7.908104182921690523464369394590, −6.22198588332098193814356401954, −5.12363098142331681870153654774, −4.17780080614338658526595199104,
1.46516352558325412539928246808, 2.61682647533642484972924197846, 5.07283218798692062881593707561, 6.05737308066031652974605561215, 8.550732541281100934015721179453, 10.37631384880634569220671718340, 11.20059772096881380748300741851, 12.17077627619765917689951569885, 13.21978166989832576254231454778, 14.01582405615724782744883072306