L(s) = 1 | + (−2.87 − 4.97i)2-s + (−8.30 + 3.46i)3-s + (−8.51 + 14.7i)4-s + (7.19 + 23.9i)5-s + (41.1 + 31.3i)6-s + (41.4 − 23.9i)7-s + 5.92·8-s + (56.9 − 57.6i)9-s + (98.5 − 104. i)10-s + (−73.2 + 42.2i)11-s + (19.5 − 152. i)12-s + (193. + 111. i)13-s + (−238. − 137. i)14-s + (−142. − 173. i)15-s + (119. + 206. i)16-s + 434.·17-s + ⋯ |
L(s) = 1 | + (−0.718 − 1.24i)2-s + (−0.922 + 0.385i)3-s + (−0.532 + 0.921i)4-s + (0.287 + 0.957i)5-s + (1.14 + 0.871i)6-s + (0.845 − 0.487i)7-s + 0.0925·8-s + (0.702 − 0.711i)9-s + (0.985 − 1.04i)10-s + (−0.605 + 0.349i)11-s + (0.135 − 1.05i)12-s + (1.14 + 0.660i)13-s + (−1.21 − 0.701i)14-s + (−0.634 − 0.772i)15-s + (0.465 + 0.806i)16-s + 1.50·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.951 + 0.308i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.951 + 0.308i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.831198 - 0.131245i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.831198 - 0.131245i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (8.30 - 3.46i)T \) |
| 5 | \( 1 + (-7.19 - 23.9i)T \) |
good | 2 | \( 1 + (2.87 + 4.97i)T + (-8 + 13.8i)T^{2} \) |
| 7 | \( 1 + (-41.4 + 23.9i)T + (1.20e3 - 2.07e3i)T^{2} \) |
| 11 | \( 1 + (73.2 - 42.2i)T + (7.32e3 - 1.26e4i)T^{2} \) |
| 13 | \( 1 + (-193. - 111. i)T + (1.42e4 + 2.47e4i)T^{2} \) |
| 17 | \( 1 - 434.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 378.T + 1.30e5T^{2} \) |
| 23 | \( 1 + (326. - 566. i)T + (-1.39e5 - 2.42e5i)T^{2} \) |
| 29 | \( 1 + (430. - 248. i)T + (3.53e5 - 6.12e5i)T^{2} \) |
| 31 | \( 1 + (-151. + 262. i)T + (-4.61e5 - 7.99e5i)T^{2} \) |
| 37 | \( 1 + 55.6iT - 1.87e6T^{2} \) |
| 41 | \( 1 + (-411. - 237. i)T + (1.41e6 + 2.44e6i)T^{2} \) |
| 43 | \( 1 + (-707. + 408. i)T + (1.70e6 - 2.96e6i)T^{2} \) |
| 47 | \( 1 + (435. + 753. i)T + (-2.43e6 + 4.22e6i)T^{2} \) |
| 53 | \( 1 - 2.33e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + (1.01e3 + 588. i)T + (6.05e6 + 1.04e7i)T^{2} \) |
| 61 | \( 1 + (-3.45e3 - 5.98e3i)T + (-6.92e6 + 1.19e7i)T^{2} \) |
| 67 | \( 1 + (3.35e3 + 1.93e3i)T + (1.00e7 + 1.74e7i)T^{2} \) |
| 71 | \( 1 + 5.82e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 6.44e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + (2.44e3 + 4.23e3i)T + (-1.94e7 + 3.37e7i)T^{2} \) |
| 83 | \( 1 + (-3.25e3 - 5.64e3i)T + (-2.37e7 + 4.11e7i)T^{2} \) |
| 89 | \( 1 - 1.38e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (1.16e4 - 6.74e3i)T + (4.42e7 - 7.66e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.06685790778147796896416758598, −13.68629903397245447114859677986, −11.98148972600282092877131295189, −11.22661916507443052373484923281, −10.42949097000982237275321686619, −9.564025969734973947733009043515, −7.57649052588907751477336559157, −5.73861560516294033120991474132, −3.61543689112458273153115536227, −1.40169439143666334197755126330,
0.915278038019634837406278456602, 5.29703442159280689533121195117, 5.90824500678170308654517796816, 7.74960544381038243561861354949, 8.465022806783606274000670423741, 10.06416450527224580032125258050, 11.65628043641579473592466251876, 12.77339681841763669264961945158, 14.18336229795816836844898160082, 15.76872882909916548624214473647