Properties

Label 2-450-9.4-c1-0-6
Degree $2$
Conductor $450$
Sign $-0.173 - 0.984i$
Analytic cond. $3.59326$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (1.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + 1.73i·6-s + (−0.5 − 0.866i)7-s − 0.999·8-s + (1.5 + 2.59i)9-s + (1 + 1.73i)11-s + (−1.49 + 0.866i)12-s + (−3 + 5.19i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 2·17-s + (−1.5 + 2.59i)18-s + 6·19-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.866 + 0.499i)3-s + (−0.249 + 0.433i)4-s + 0.707i·6-s + (−0.188 − 0.327i)7-s − 0.353·8-s + (0.5 + 0.866i)9-s + (0.301 + 0.522i)11-s + (−0.433 + 0.250i)12-s + (−0.832 + 1.44i)13-s + (0.133 − 0.231i)14-s + (−0.125 − 0.216i)16-s + 0.485·17-s + (−0.353 + 0.612i)18-s + 1.37·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.173 - 0.984i$
Analytic conductor: \(3.59326\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (301, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :1/2),\ -0.173 - 0.984i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.34274 + 1.60022i\)
\(L(\frac12)\) \(\approx\) \(1.34274 + 1.60022i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (-1.5 - 0.866i)T \)
5 \( 1 \)
good7 \( 1 + (0.5 + 0.866i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (3 - 5.19i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (4.5 + 7.79i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + (-5.5 + 9.52i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (3.5 + 6.06i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (5.5 - 9.52i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 + (-6 - 10.3i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (5.5 + 9.52i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - T + 89T^{2} \)
97 \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48966756677868233448556566790, −10.01017730899387037747275254222, −9.550844405896477565828687250390, −8.648292995987210437224674686512, −7.44251812564754360861457906003, −7.04986705036110303408472636946, −5.52079711748507274723474061707, −4.43777152634048219273672562745, −3.66955792786175549294448284817, −2.21546056966703936744975929825, 1.21655190000704858499829476092, 2.87865039617803272921413129887, 3.37561479560052560478036735673, 5.01338013227043856912891670704, 6.01346710259467282913268356923, 7.33363924584719492375648275269, 8.097339354425975875850425490863, 9.236182684772098707220787825060, 9.801225634631384391720901245147, 10.89494979573783573752794986184

Graph of the $Z$-function along the critical line