L(s) = 1 | + (0.5 + 0.866i)2-s + (1.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + 1.73i·6-s + (−0.5 − 0.866i)7-s − 0.999·8-s + (1.5 + 2.59i)9-s + (1 + 1.73i)11-s + (−1.49 + 0.866i)12-s + (−3 + 5.19i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 2·17-s + (−1.5 + 2.59i)18-s + 6·19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.866 + 0.499i)3-s + (−0.249 + 0.433i)4-s + 0.707i·6-s + (−0.188 − 0.327i)7-s − 0.353·8-s + (0.5 + 0.866i)9-s + (0.301 + 0.522i)11-s + (−0.433 + 0.250i)12-s + (−0.832 + 1.44i)13-s + (0.133 − 0.231i)14-s + (−0.125 − 0.216i)16-s + 0.485·17-s + (−0.353 + 0.612i)18-s + 1.37·19-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)(−0.173−0.984i)Λ(2−s)
Λ(s)=(=(450s/2ΓC(s+1/2)L(s)(−0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
450
= 2⋅32⋅52
|
Sign: |
−0.173−0.984i
|
Analytic conductor: |
3.59326 |
Root analytic conductor: |
1.89559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ450(301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 450, ( :1/2), −0.173−0.984i)
|
Particular Values
L(1) |
≈ |
1.34274+1.60022i |
L(21) |
≈ |
1.34274+1.60022i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+(−1.5−0.866i)T |
| 5 | 1 |
good | 7 | 1+(0.5+0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(3−5.19i)T+(−6.5−11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+(−0.5+0.866i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.5+7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1+1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+(−5.5+9.52i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2+3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.5+6.06i)T+(−23.5+40.7i)T2 |
| 53 | 1+53T2 |
| 59 | 1+(−2+3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5−6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.5−9.52i)T+(−33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−4T+73T2 |
| 79 | 1+(−6−10.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(5.5+9.52i)T+(−41.5+71.8i)T2 |
| 89 | 1−T+89T2 |
| 97 | 1+(4+6.92i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48966756677868233448556566790, −10.01017730899387037747275254222, −9.550844405896477565828687250390, −8.648292995987210437224674686512, −7.44251812564754360861457906003, −7.04986705036110303408472636946, −5.52079711748507274723474061707, −4.43777152634048219273672562745, −3.66955792786175549294448284817, −2.21546056966703936744975929825,
1.21655190000704858499829476092, 2.87865039617803272921413129887, 3.37561479560052560478036735673, 5.01338013227043856912891670704, 6.01346710259467282913268356923, 7.33363924584719492375648275269, 8.097339354425975875850425490863, 9.236182684772098707220787825060, 9.801225634631384391720901245147, 10.89494979573783573752794986184