L(s) = 1 | − 2·2-s − 2·3-s + 4-s + 4·6-s + 7-s + 2·8-s − 3·9-s + 3·11-s − 2·12-s − 2·13-s − 2·14-s − 4·16-s + 18·17-s + 6·18-s + 2·19-s − 2·21-s − 6·22-s − 3·23-s − 4·24-s + 4·26-s + 14·27-s + 28-s + 3·29-s + 2·31-s + 2·32-s − 6·33-s − 36·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 1/2·4-s + 1.63·6-s + 0.377·7-s + 0.707·8-s − 9-s + 0.904·11-s − 0.577·12-s − 0.554·13-s − 0.534·14-s − 16-s + 4.36·17-s + 1.41·18-s + 0.458·19-s − 0.436·21-s − 1.27·22-s − 0.625·23-s − 0.816·24-s + 0.784·26-s + 2.69·27-s + 0.188·28-s + 0.557·29-s + 0.359·31-s + 0.353·32-s − 1.04·33-s − 6.17·34-s + ⋯ |
Λ(s)=(=((24⋅38⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅38⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅38⋅58
|
Sign: |
1
|
Analytic conductor: |
166.708 |
Root analytic conductor: |
1.89559 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅38⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7513276936 |
L(21) |
≈ |
0.7513276936 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+T+T2)2 |
| 3 | C2 | (1+T+pT2)2 |
| 5 | | 1 |
good | 7 | D4×C2 | 1−T−5T2+8T3−20T4+8pT5−5p2T6−p3T7+p4T8 |
| 11 | D4×C2 | 1−3T−7T2+18T3+36T4+18pT5−7p2T6−3p3T7+p4T8 |
| 13 | D4×C2 | 1+2T+10T2−64T3−185T4−64pT5+10p2T6+2p3T7+p4T8 |
| 17 | D4 | (1−9T+46T2−9pT3+p2T4)2 |
| 19 | D4 | (1−T+30T2−pT3+p2T4)2 |
| 23 | D4×C2 | 1+3T−31T2−18T3+864T4−18pT5−31p2T6+3p3T7+p4T8 |
| 29 | D4×C2 | 1−3T−43T2+18T3+1602T4+18pT5−43p2T6−3p3T7+p4T8 |
| 31 | D4×C2 | 1−2T−26T2+64T3−185T4+64pT5−26p2T6−2p3T7+p4T8 |
| 37 | C2 | (1−4T+pT2)4 |
| 41 | C22 | (1−3T−32T2−3pT3+p2T4)2 |
| 43 | D4×C2 | 1+17T+139T2+1088T3+8224T4+1088pT5+139p2T6+17p3T7+p4T8 |
| 47 | D4×C2 | 1+9T−25T2+108T3+5220T4+108pT5−25p2T6+9p3T7+p4T8 |
| 53 | C22 | (1−26T2+p2T4)2 |
| 59 | D4×C2 | 1+3T−103T2−18T3+8532T4−18pT5−103p2T6+3p3T7+p4T8 |
| 61 | D4×C2 | 1+T−47T2−74T3−1478T4−74pT5−47p2T6+p3T7+p4T8 |
| 67 | C22 | (1+7T−18T2+7pT3+p2T4)2 |
| 71 | C2 | (1+6T+pT2)4 |
| 73 | D4 | (1−11T+102T2−11pT3+p2T4)2 |
| 79 | C22 | (1+2T−75T2+2pT3+p2T4)2 |
| 83 | D4×C2 | 1−9T−97T2−108T3+18072T4−108pT5−97p2T6−9p3T7+p4T8 |
| 89 | D4 | (1−15T+160T2−15pT3+p2T4)2 |
| 97 | D4×C2 | 1+11T−95T2+242T3+25510T4+242pT5−95p2T6+11p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.238907163307847926973934599389, −7.59642553936461887459791423463, −7.58181438181280895180891645024, −7.56168929819908919274144386886, −7.39557845651719156679207722853, −6.72138483076677685519083495070, −6.45727953836589963641012956699, −6.24843277043642241968095167081, −6.01243059635382557420088787259, −5.97225882102372490357664095155, −5.37226378574877034614356017304, −5.36962303761258296357876959444, −5.14529696431151940772261773175, −4.80381608457137654242643483043, −4.39829875938970653391149644738, −4.32873757139216511598232275913, −3.66282152371905287077999733307, −3.26973320707507731294267519279, −3.21436384597287508819489242448, −2.94340361932433208035035069957, −2.37434490956744227691583248713, −1.74274670551797321247400523076, −1.37399023293577192992577820503, −0.795769076564163916437065553995, −0.69330471787648547657972885818,
0.69330471787648547657972885818, 0.795769076564163916437065553995, 1.37399023293577192992577820503, 1.74274670551797321247400523076, 2.37434490956744227691583248713, 2.94340361932433208035035069957, 3.21436384597287508819489242448, 3.26973320707507731294267519279, 3.66282152371905287077999733307, 4.32873757139216511598232275913, 4.39829875938970653391149644738, 4.80381608457137654242643483043, 5.14529696431151940772261773175, 5.36962303761258296357876959444, 5.37226378574877034614356017304, 5.97225882102372490357664095155, 6.01243059635382557420088787259, 6.24843277043642241968095167081, 6.45727953836589963641012956699, 6.72138483076677685519083495070, 7.39557845651719156679207722853, 7.56168929819908919274144386886, 7.58181438181280895180891645024, 7.59642553936461887459791423463, 8.238907163307847926973934599389