L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.866 − 1.5i)3-s + (0.499 + 0.866i)4-s + (−1.5 + 0.866i)6-s + (−3.46 − 2i)7-s − 0.999i·8-s + (−1.5 − 2.59i)9-s + (−1.5 + 2.59i)11-s + 1.73·12-s + (−3.46 + 2i)13-s + (1.99 + 3.46i)14-s + (−0.5 + 0.866i)16-s − 3i·17-s + 3i·18-s − 5·19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.499 − 0.866i)3-s + (0.249 + 0.433i)4-s + (−0.612 + 0.353i)6-s + (−1.30 − 0.755i)7-s − 0.353i·8-s + (−0.5 − 0.866i)9-s + (−0.452 + 0.783i)11-s + 0.499·12-s + (−0.960 + 0.554i)13-s + (0.534 + 0.925i)14-s + (−0.125 + 0.216i)16-s − 0.727i·17-s + 0.707i·18-s − 1.14·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 - 0.232i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.972 - 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0560081 + 0.475523i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0560081 + 0.475523i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.866 + 1.5i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (3.46 + 2i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.46 - 2i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + (-5.19 + 3i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4iT - 37T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (9.52 + 5.5i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.33 - 2.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 7iT - 73T^{2} \) |
| 79 | \( 1 + (-7 + 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (10.3 + 6i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (-9.52 - 5.5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33627718147698500806231928720, −9.709748718331895682224511132547, −8.913333416462490779300503180634, −7.78371973550603916365600195764, −6.97582969063527856675569584815, −6.47936131588482865718397035950, −4.54689065441037875179169204744, −3.14805546085180496860853721144, −2.18884700741170216058867990725, −0.31407741482225427613906979731,
2.54908149512236029389980213188, 3.44074413769575506487357579105, 5.07254469367324186838827404976, 5.91878906940466931202545455654, 7.03008774327176204295031878194, 8.308013010848122820228918670237, 8.846117277597089611596954835546, 9.729185973000450787578992423281, 10.37491437473307302732893728906, 11.18386031140838824199255064688