Properties

Label 16-450e8-1.1-c1e8-0-2
Degree $16$
Conductor $1.682\times 10^{21}$
Sign $1$
Analytic cond. $27791.8$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·11-s + 16-s + 32·31-s − 84·41-s + 16·61-s + 9·81-s − 48·101-s + 34·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s − 12·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 3.61·11-s + 1/4·16-s + 5.74·31-s − 13.1·41-s + 2.04·61-s + 81-s − 4.77·101-s + 3.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s − 0.904·176-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{16} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(27791.8\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{16} \cdot 5^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4351386390\)
\(L(\frac12)\) \(\approx\) \(0.4351386390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T^{4} + T^{8} \)
3 \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
5 \( 1 \)
good7 \( ( 1 + 23 T^{4} + p^{4} T^{8} )( 1 + 71 T^{4} + p^{4} T^{8} ) \)
11 \( ( 1 + 3 T + 14 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{4} \)
13 \( 1 + 142 T^{4} - 8397 T^{8} + 142 p^{4} T^{12} + p^{8} T^{16} \)
17 \( ( 1 + 47 T^{4} + p^{4} T^{8} )^{2} \)
19 \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{4} \)
23 \( 1 + 958 T^{4} + 637923 T^{8} + 958 p^{4} T^{12} + p^{8} T^{16} \)
29 \( ( 1 - 46 T^{2} + 1275 T^{4} - 46 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{4} \)
37 \( ( 1 - 2062 T^{4} + p^{4} T^{8} )^{2} \)
41 \( ( 1 + 21 T + 188 T^{2} + 21 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( 1 + 217 T^{4} - 3371712 T^{8} + 217 p^{4} T^{12} + p^{8} T^{16} \)
47 \( 1 + 1054 T^{4} - 3768765 T^{8} + 1054 p^{4} T^{12} + p^{8} T^{16} \)
53 \( ( 1 + p^{2} T^{4} )^{4} \)
59 \( ( 1 + 29 T^{2} - 2640 T^{4} + 29 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 4 T - 45 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( 1 - 8183 T^{4} + 46810368 T^{8} - 8183 p^{4} T^{12} + p^{8} T^{16} \)
71 \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{4} \)
73 \( ( 1 - 5617 T^{4} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{2}( 1 + 131 T^{2} + p^{2} T^{4} )^{2} \)
83 \( 1 + 13294 T^{4} + 129272115 T^{8} + 13294 p^{4} T^{12} + p^{8} T^{16} \)
89 \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{4} \)
97 \( 1 + 4657 T^{4} - 66841632 T^{8} + 4657 p^{4} T^{12} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.97245233580033949985592584252, −4.90123600954574312613076232472, −4.60076058180777853225636636410, −4.55854507460634459623752892171, −4.47151969675397148136500124785, −4.26040047818561177554415923432, −3.96715444969358188815098036970, −3.88487485221578646724998048494, −3.66892946758160359052545163007, −3.38991426959229186858895279610, −3.29546566246711301907190401366, −3.28212061155652647303128791698, −3.02359974528113291077145738441, −2.98281538743725725516000433511, −2.78971947913349366466335164194, −2.59253926475763213027421666137, −2.42620907496419391841846690218, −2.27761270376454924522887663157, −1.99133345595986607385407332683, −1.63326013519296556944833134473, −1.62370666241228614173726748757, −1.50536184200965566614119064797, −1.05130341901194963155795700792, −0.49338548179738134441149647277, −0.17976486837392910438750151891, 0.17976486837392910438750151891, 0.49338548179738134441149647277, 1.05130341901194963155795700792, 1.50536184200965566614119064797, 1.62370666241228614173726748757, 1.63326013519296556944833134473, 1.99133345595986607385407332683, 2.27761270376454924522887663157, 2.42620907496419391841846690218, 2.59253926475763213027421666137, 2.78971947913349366466335164194, 2.98281538743725725516000433511, 3.02359974528113291077145738441, 3.28212061155652647303128791698, 3.29546566246711301907190401366, 3.38991426959229186858895279610, 3.66892946758160359052545163007, 3.88487485221578646724998048494, 3.96715444969358188815098036970, 4.26040047818561177554415923432, 4.47151969675397148136500124785, 4.55854507460634459623752892171, 4.60076058180777853225636636410, 4.90123600954574312613076232472, 4.97245233580033949985592584252

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.