L(s) = 1 | + 4·2-s + 12·4-s + 32·8-s + 80·16-s + 124·17-s + 168·19-s + 280·23-s + 32·31-s + 192·32-s + 496·34-s + 672·38-s + 1.12e3·46-s + 200·47-s − 190·49-s + 1.47e3·53-s − 716·61-s + 128·62-s + 448·64-s + 1.48e3·68-s + 2.01e3·76-s − 1.87e3·79-s + 2.60e3·83-s + 3.36e3·92-s + 800·94-s − 760·98-s + 5.90e3·106-s + 1.39e3·107-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s + 5/4·16-s + 1.76·17-s + 2.02·19-s + 2.53·23-s + 0.185·31-s + 1.06·32-s + 2.50·34-s + 2.86·38-s + 3.58·46-s + 0.620·47-s − 0.553·49-s + 3.82·53-s − 1.50·61-s + 0.262·62-s + 7/8·64-s + 2.65·68-s + 3.04·76-s − 2.66·79-s + 3.44·83-s + 3.80·92-s + 0.877·94-s − 0.783·98-s + 5.40·106-s + 1.25·107-s + ⋯ |
Λ(s)=(=(202500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(202500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
202500
= 22⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
704.948 |
Root analytic conductor: |
5.15275 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 202500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
10.49444170 |
L(21) |
≈ |
10.49444170 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1+190T2+p6T4 |
| 11 | C22 | 1+2166T2+p6T4 |
| 13 | C22 | 1−70T2+p6T4 |
| 17 | C2 | (1−62T+p3T2)2 |
| 19 | C2 | (1−84T+p3T2)2 |
| 23 | C2 | (1−140T+p3T2)2 |
| 29 | C22 | 1+8602T2+p6T4 |
| 31 | C2 | (1−16T+p3T2)2 |
| 37 | C22 | 1+41290T2+p6T4 |
| 41 | C22 | 1+88242T2+p6T4 |
| 43 | C22 | 1+32038T2+p6T4 |
| 47 | C2 | (1−100T+p3T2)2 |
| 53 | C2 | (1−738T+p3T2)2 |
| 59 | C22 | 1−6378T2+p6T4 |
| 61 | C2 | (1+358T+p3T2)2 |
| 67 | C22 | 1−114698T2+p6T4 |
| 71 | C22 | 1−159122T2+p6T4 |
| 73 | C22 | 1+579634T2+p6T4 |
| 79 | C2 | (1+936T+p3T2)2 |
| 83 | C2 | (1−1304T+p3T2)2 |
| 89 | C22 | 1+902034T2+p6T4 |
| 97 | C22 | 1+1251970T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.91325510212989642997366542315, −10.68718432887346367326811546760, −9.949048989581920647197480122687, −9.855758807957044587102758869553, −8.900879207728493049964041196471, −8.877068859602440315619710431198, −7.78759338580560266958756108244, −7.57343723924811754597840143077, −7.16902440058342457029628776373, −6.72075832164600314028619023790, −5.95557537195315445080649149502, −5.58037578033031578540529797356, −5.01034348210061453900338334788, −4.96465329895456523770127855772, −3.88596975781471889340555873069, −3.53573356912624628836371954998, −2.92567263138210704051459502448, −2.55143500753069135015772712354, −1.22000691428943146410391995160, −1.02322585538005756882312502793,
1.02322585538005756882312502793, 1.22000691428943146410391995160, 2.55143500753069135015772712354, 2.92567263138210704051459502448, 3.53573356912624628836371954998, 3.88596975781471889340555873069, 4.96465329895456523770127855772, 5.01034348210061453900338334788, 5.58037578033031578540529797356, 5.95557537195315445080649149502, 6.72075832164600314028619023790, 7.16902440058342457029628776373, 7.57343723924811754597840143077, 7.78759338580560266958756108244, 8.877068859602440315619710431198, 8.900879207728493049964041196471, 9.855758807957044587102758869553, 9.949048989581920647197480122687, 10.68718432887346367326811546760, 10.91325510212989642997366542315