Properties

Label 2-450-5.4-c3-0-12
Degree $2$
Conductor $450$
Sign $0.894 - 0.447i$
Analytic cond. $26.5508$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·2-s − 4·4-s + 4i·7-s − 8i·8-s − 12·11-s − 58i·13-s − 8·14-s + 16·16-s + 66i·17-s + 100·19-s − 24i·22-s − 132i·23-s + 116·26-s − 16i·28-s − 90·29-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.215i·7-s − 0.353i·8-s − 0.328·11-s − 1.23i·13-s − 0.152·14-s + 0.250·16-s + 0.941i·17-s + 1.20·19-s − 0.232i·22-s − 1.19i·23-s + 0.874·26-s − 0.107i·28-s − 0.576·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(26.5508\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :3/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.718524662\)
\(L(\frac12)\) \(\approx\) \(1.718524662\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4iT - 343T^{2} \)
11 \( 1 + 12T + 1.33e3T^{2} \)
13 \( 1 + 58iT - 2.19e3T^{2} \)
17 \( 1 - 66iT - 4.91e3T^{2} \)
19 \( 1 - 100T + 6.85e3T^{2} \)
23 \( 1 + 132iT - 1.21e4T^{2} \)
29 \( 1 + 90T + 2.43e4T^{2} \)
31 \( 1 - 152T + 2.97e4T^{2} \)
37 \( 1 - 34iT - 5.06e4T^{2} \)
41 \( 1 - 438T + 6.89e4T^{2} \)
43 \( 1 - 32iT - 7.95e4T^{2} \)
47 \( 1 + 204iT - 1.03e5T^{2} \)
53 \( 1 + 222iT - 1.48e5T^{2} \)
59 \( 1 - 420T + 2.05e5T^{2} \)
61 \( 1 - 902T + 2.26e5T^{2} \)
67 \( 1 - 1.02e3iT - 3.00e5T^{2} \)
71 \( 1 + 432T + 3.57e5T^{2} \)
73 \( 1 - 362iT - 3.89e5T^{2} \)
79 \( 1 - 160T + 4.93e5T^{2} \)
83 \( 1 + 72iT - 5.71e5T^{2} \)
89 \( 1 - 810T + 7.04e5T^{2} \)
97 \( 1 + 1.10e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51804494624323660398869690701, −9.867074630777899289913721191661, −8.671545843867980458318146727698, −8.019383443235623041770190810278, −7.09416946760370309077869307043, −5.93781691166390590797326251258, −5.26132311540951957578189144581, −3.98117166468712184266240546502, −2.67582355966347299025569646735, −0.75602300209059065478118762817, 0.959846312424796667948307735738, 2.34921737102649215019836779592, 3.56924481079303792323852415316, 4.65756054180351006520017865160, 5.68093892312792666205441509627, 7.05372382141228285960933022142, 7.85307847814056745705920043101, 9.241127417908519745188081306337, 9.560657420168125583345953404815, 10.72848523748022034471888247187

Graph of the $Z$-function along the critical line