L(s) = 1 | + 2i·2-s − 4·4-s + 4i·7-s − 8i·8-s − 12·11-s − 58i·13-s − 8·14-s + 16·16-s + 66i·17-s + 100·19-s − 24i·22-s − 132i·23-s + 116·26-s − 16i·28-s − 90·29-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.215i·7-s − 0.353i·8-s − 0.328·11-s − 1.23i·13-s − 0.152·14-s + 0.250·16-s + 0.941i·17-s + 1.20·19-s − 0.232i·22-s − 1.19i·23-s + 0.874·26-s − 0.107i·28-s − 0.576·29-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(450s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
450
= 2⋅32⋅52
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
26.5508 |
Root analytic conductor: |
5.15275 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ450(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 450, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.718524662 |
L(21) |
≈ |
1.718524662 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−4iT−343T2 |
| 11 | 1+12T+1.33e3T2 |
| 13 | 1+58iT−2.19e3T2 |
| 17 | 1−66iT−4.91e3T2 |
| 19 | 1−100T+6.85e3T2 |
| 23 | 1+132iT−1.21e4T2 |
| 29 | 1+90T+2.43e4T2 |
| 31 | 1−152T+2.97e4T2 |
| 37 | 1−34iT−5.06e4T2 |
| 41 | 1−438T+6.89e4T2 |
| 43 | 1−32iT−7.95e4T2 |
| 47 | 1+204iT−1.03e5T2 |
| 53 | 1+222iT−1.48e5T2 |
| 59 | 1−420T+2.05e5T2 |
| 61 | 1−902T+2.26e5T2 |
| 67 | 1−1.02e3iT−3.00e5T2 |
| 71 | 1+432T+3.57e5T2 |
| 73 | 1−362iT−3.89e5T2 |
| 79 | 1−160T+4.93e5T2 |
| 83 | 1+72iT−5.71e5T2 |
| 89 | 1−810T+7.04e5T2 |
| 97 | 1+1.10e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51804494624323660398869690701, −9.867074630777899289913721191661, −8.671545843867980458318146727698, −8.019383443235623041770190810278, −7.09416946760370309077869307043, −5.93781691166390590797326251258, −5.26132311540951957578189144581, −3.98117166468712184266240546502, −2.67582355966347299025569646735, −0.75602300209059065478118762817,
0.959846312424796667948307735738, 2.34921737102649215019836779592, 3.56924481079303792323852415316, 4.65756054180351006520017865160, 5.68093892312792666205441509627, 7.05372382141228285960933022142, 7.85307847814056745705920043101, 9.241127417908519745188081306337, 9.560657420168125583345953404815, 10.72848523748022034471888247187