Properties

Label 2-459-1.1-c1-0-2
Degree $2$
Conductor $459$
Sign $1$
Analytic cond. $3.66513$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 3·5-s + 2·7-s + 3·11-s + 2·13-s + 4·16-s − 17-s + 5·19-s + 6·20-s + 4·25-s − 4·28-s + 3·29-s + 8·31-s − 6·35-s + 8·37-s − 6·41-s − 4·43-s − 6·44-s + 6·47-s − 3·49-s − 4·52-s − 12·53-s − 9·55-s + 12·59-s − 10·61-s − 8·64-s − 6·65-s + ⋯
L(s)  = 1  − 4-s − 1.34·5-s + 0.755·7-s + 0.904·11-s + 0.554·13-s + 16-s − 0.242·17-s + 1.14·19-s + 1.34·20-s + 4/5·25-s − 0.755·28-s + 0.557·29-s + 1.43·31-s − 1.01·35-s + 1.31·37-s − 0.937·41-s − 0.609·43-s − 0.904·44-s + 0.875·47-s − 3/7·49-s − 0.554·52-s − 1.64·53-s − 1.21·55-s + 1.56·59-s − 1.28·61-s − 64-s − 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $1$
Analytic conductor: \(3.66513\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 459,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.014828892\)
\(L(\frac12)\) \(\approx\) \(1.014828892\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + p T^{2} \)
5 \( 1 + 3 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.38093182139037659842566820047, −10.10278302014150851075341421887, −9.109300011117320213307134485881, −8.256713755120548244557004000097, −7.74542291215750154959689622231, −6.44257768768837718607648442666, −5.01146682876845260799537247768, −4.25748270915351505319381939602, −3.37512184396728216346992291538, −1.01021305890200635033573864009, 1.01021305890200635033573864009, 3.37512184396728216346992291538, 4.25748270915351505319381939602, 5.01146682876845260799537247768, 6.44257768768837718607648442666, 7.74542291215750154959689622231, 8.256713755120548244557004000097, 9.109300011117320213307134485881, 10.10278302014150851075341421887, 11.38093182139037659842566820047

Graph of the $Z$-function along the critical line