L(s) = 1 | − 2·4-s − 3·5-s + 2·7-s + 3·11-s + 2·13-s + 4·16-s − 17-s + 5·19-s + 6·20-s + 4·25-s − 4·28-s + 3·29-s + 8·31-s − 6·35-s + 8·37-s − 6·41-s − 4·43-s − 6·44-s + 6·47-s − 3·49-s − 4·52-s − 12·53-s − 9·55-s + 12·59-s − 10·61-s − 8·64-s − 6·65-s + ⋯ |
L(s) = 1 | − 4-s − 1.34·5-s + 0.755·7-s + 0.904·11-s + 0.554·13-s + 16-s − 0.242·17-s + 1.14·19-s + 1.34·20-s + 4/5·25-s − 0.755·28-s + 0.557·29-s + 1.43·31-s − 1.01·35-s + 1.31·37-s − 0.937·41-s − 0.609·43-s − 0.904·44-s + 0.875·47-s − 3/7·49-s − 0.554·52-s − 1.64·53-s − 1.21·55-s + 1.56·59-s − 1.28·61-s − 64-s − 0.744·65-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.014828892 |
L(21) |
≈ |
1.014828892 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+T |
good | 2 | 1+pT2 |
| 5 | 1+3T+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1−2T+pT2 |
| 19 | 1−5T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−5T+pT2 |
| 71 | 1−15T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38093182139037659842566820047, −10.10278302014150851075341421887, −9.109300011117320213307134485881, −8.256713755120548244557004000097, −7.74542291215750154959689622231, −6.44257768768837718607648442666, −5.01146682876845260799537247768, −4.25748270915351505319381939602, −3.37512184396728216346992291538, −1.01021305890200635033573864009,
1.01021305890200635033573864009, 3.37512184396728216346992291538, 4.25748270915351505319381939602, 5.01146682876845260799537247768, 6.44257768768837718607648442666, 7.74542291215750154959689622231, 8.256713755120548244557004000097, 9.109300011117320213307134485881, 10.10278302014150851075341421887, 11.38093182139037659842566820047