L(s) = 1 | + (−0.151 − 1.40i)2-s − 2.99i·3-s + (−1.95 + 0.425i)4-s − i·5-s + (−4.21 + 0.453i)6-s + 3.98·7-s + (0.893 + 2.68i)8-s − 5.98·9-s + (−1.40 + 0.151i)10-s − 5.79·11-s + (1.27 + 5.85i)12-s − 5.59·13-s + (−0.602 − 5.59i)14-s − 2.99·15-s + (3.63 − 1.66i)16-s − 1.88i·17-s + ⋯ |
L(s) = 1 | + (−0.106 − 0.994i)2-s − 1.73i·3-s + (−0.977 + 0.212i)4-s − 0.447i·5-s + (−1.72 + 0.185i)6-s + 1.50·7-s + (0.315 + 0.948i)8-s − 1.99·9-s + (−0.444 + 0.0478i)10-s − 1.74·11-s + (0.368 + 1.69i)12-s − 1.55·13-s + (−0.160 − 1.49i)14-s − 0.774·15-s + (0.909 − 0.415i)16-s − 0.456i·17-s + ⋯ |
Λ(s)=(=(460s/2ΓC(s)L(s)(−0.574−0.818i)Λ(2−s)
Λ(s)=(=(460s/2ΓC(s+1/2)L(s)(−0.574−0.818i)Λ(1−s)
Degree: |
2 |
Conductor: |
460
= 22⋅5⋅23
|
Sign: |
−0.574−0.818i
|
Analytic conductor: |
3.67311 |
Root analytic conductor: |
1.91653 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ460(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 460, ( :1/2), −0.574−0.818i)
|
Particular Values
L(1) |
≈ |
0.441970+0.850728i |
L(21) |
≈ |
0.441970+0.850728i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.151+1.40i)T |
| 5 | 1+iT |
| 23 | 1+(−4.42+1.85i)T |
good | 3 | 1+2.99iT−3T2 |
| 7 | 1−3.98T+7T2 |
| 11 | 1+5.79T+11T2 |
| 13 | 1+5.59T+13T2 |
| 17 | 1+1.88iT−17T2 |
| 19 | 1−3.03T+19T2 |
| 29 | 1−1.45T+29T2 |
| 31 | 1+4.43iT−31T2 |
| 37 | 1−4.01iT−37T2 |
| 41 | 1+2.68T+41T2 |
| 43 | 1−4.78T+43T2 |
| 47 | 1+6.45iT−47T2 |
| 53 | 1+8.62iT−53T2 |
| 59 | 1+1.55iT−59T2 |
| 61 | 1+6.06iT−61T2 |
| 67 | 1−7.88T+67T2 |
| 71 | 1+5.26iT−71T2 |
| 73 | 1−2.20T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1+8.56T+83T2 |
| 89 | 1−8.41iT−89T2 |
| 97 | 1−2.87iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78954446804749818840699349094, −9.621551956258333915691909472452, −8.311876130051242789514409996929, −7.929457395327154634284168809856, −7.19768456071297107840759877993, −5.25483354048829077739661550086, −4.96886432780788319119972028431, −2.70009590510981186090186997322, −1.99565578732841433138515620392, −0.61214061972460443618340604014,
2.85512985426219632672877783302, 4.35438417574474404048069356418, 5.10999497199785456639401690401, 5.47510199844017187060771949450, 7.34462840742329801187190302124, 7.971609101245998314781228495460, 8.941614086313297277975269415817, 9.884112496296329222903266765096, 10.52997501818797086249122821872, 11.15746801067043255971326232320