Properties

Label 2-460-92.91-c1-0-47
Degree $2$
Conductor $460$
Sign $0.182 - 0.983i$
Analytic cond. $3.67311$
Root an. cond. $1.91653$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.151 − 1.40i)2-s − 2.99i·3-s + (−1.95 + 0.425i)4-s + i·5-s + (−4.21 + 0.453i)6-s − 3.98·7-s + (0.893 + 2.68i)8-s − 5.98·9-s + (1.40 − 0.151i)10-s + 5.79·11-s + (1.27 + 5.85i)12-s − 5.59·13-s + (0.602 + 5.59i)14-s + 2.99·15-s + (3.63 − 1.66i)16-s + 1.88i·17-s + ⋯
L(s)  = 1  + (−0.106 − 0.994i)2-s − 1.73i·3-s + (−0.977 + 0.212i)4-s + 0.447i·5-s + (−1.72 + 0.185i)6-s − 1.50·7-s + (0.315 + 0.948i)8-s − 1.99·9-s + (0.444 − 0.0478i)10-s + 1.74·11-s + (0.368 + 1.69i)12-s − 1.55·13-s + (0.160 + 1.49i)14-s + 0.774·15-s + (0.909 − 0.415i)16-s + 0.456i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(460\)    =    \(2^{2} \cdot 5 \cdot 23\)
Sign: $0.182 - 0.983i$
Analytic conductor: \(3.67311\)
Root analytic conductor: \(1.91653\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{460} (91, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 460,\ (\ :1/2),\ 0.182 - 0.983i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.235852 + 0.196028i\)
\(L(\frac12)\) \(\approx\) \(0.235852 + 0.196028i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.151 + 1.40i)T \)
5 \( 1 - iT \)
23 \( 1 + (4.42 + 1.85i)T \)
good3 \( 1 + 2.99iT - 3T^{2} \)
7 \( 1 + 3.98T + 7T^{2} \)
11 \( 1 - 5.79T + 11T^{2} \)
13 \( 1 + 5.59T + 13T^{2} \)
17 \( 1 - 1.88iT - 17T^{2} \)
19 \( 1 + 3.03T + 19T^{2} \)
29 \( 1 - 1.45T + 29T^{2} \)
31 \( 1 + 4.43iT - 31T^{2} \)
37 \( 1 + 4.01iT - 37T^{2} \)
41 \( 1 + 2.68T + 41T^{2} \)
43 \( 1 + 4.78T + 43T^{2} \)
47 \( 1 + 6.45iT - 47T^{2} \)
53 \( 1 - 8.62iT - 53T^{2} \)
59 \( 1 + 1.55iT - 59T^{2} \)
61 \( 1 - 6.06iT - 61T^{2} \)
67 \( 1 + 7.88T + 67T^{2} \)
71 \( 1 + 5.26iT - 71T^{2} \)
73 \( 1 - 2.20T + 73T^{2} \)
79 \( 1 + 13.1T + 79T^{2} \)
83 \( 1 - 8.56T + 83T^{2} \)
89 \( 1 + 8.41iT - 89T^{2} \)
97 \( 1 + 2.87iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35482405790559275446168623264, −9.532772467820616936686753714020, −8.667149571878119689777037207688, −7.49285490330461728754238410171, −6.67011730253644704684763287600, −5.98404387249697065529017982145, −4.04188197041880277124225252415, −2.84512112828309356721052076148, −1.86716496974723538066563430294, −0.19012666653588818652717362596, 3.34110019554646492895408256571, 4.21188387190734249642296689289, 5.01290255646787884011718975729, 6.14199083626223679851200041030, 6.93471034886271477760671154014, 8.458340928756191364566344478084, 9.342951710753905099087750395439, 9.652819260628648970225242499842, 10.25882349590092463835416770233, 11.77955863727769696459167501464

Graph of the $Z$-function along the critical line