L(s) = 1 | + (−0.151 − 1.40i)2-s − 2.99i·3-s + (−1.95 + 0.425i)4-s + i·5-s + (−4.21 + 0.453i)6-s − 3.98·7-s + (0.893 + 2.68i)8-s − 5.98·9-s + (1.40 − 0.151i)10-s + 5.79·11-s + (1.27 + 5.85i)12-s − 5.59·13-s + (0.602 + 5.59i)14-s + 2.99·15-s + (3.63 − 1.66i)16-s + 1.88i·17-s + ⋯ |
L(s) = 1 | + (−0.106 − 0.994i)2-s − 1.73i·3-s + (−0.977 + 0.212i)4-s + 0.447i·5-s + (−1.72 + 0.185i)6-s − 1.50·7-s + (0.315 + 0.948i)8-s − 1.99·9-s + (0.444 − 0.0478i)10-s + 1.74·11-s + (0.368 + 1.69i)12-s − 1.55·13-s + (0.160 + 1.49i)14-s + 0.774·15-s + (0.909 − 0.415i)16-s + 0.456i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.235852 + 0.196028i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.235852 + 0.196028i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.151 + 1.40i)T \) |
| 5 | \( 1 - iT \) |
| 23 | \( 1 + (4.42 + 1.85i)T \) |
good | 3 | \( 1 + 2.99iT - 3T^{2} \) |
| 7 | \( 1 + 3.98T + 7T^{2} \) |
| 11 | \( 1 - 5.79T + 11T^{2} \) |
| 13 | \( 1 + 5.59T + 13T^{2} \) |
| 17 | \( 1 - 1.88iT - 17T^{2} \) |
| 19 | \( 1 + 3.03T + 19T^{2} \) |
| 29 | \( 1 - 1.45T + 29T^{2} \) |
| 31 | \( 1 + 4.43iT - 31T^{2} \) |
| 37 | \( 1 + 4.01iT - 37T^{2} \) |
| 41 | \( 1 + 2.68T + 41T^{2} \) |
| 43 | \( 1 + 4.78T + 43T^{2} \) |
| 47 | \( 1 + 6.45iT - 47T^{2} \) |
| 53 | \( 1 - 8.62iT - 53T^{2} \) |
| 59 | \( 1 + 1.55iT - 59T^{2} \) |
| 61 | \( 1 - 6.06iT - 61T^{2} \) |
| 67 | \( 1 + 7.88T + 67T^{2} \) |
| 71 | \( 1 + 5.26iT - 71T^{2} \) |
| 73 | \( 1 - 2.20T + 73T^{2} \) |
| 79 | \( 1 + 13.1T + 79T^{2} \) |
| 83 | \( 1 - 8.56T + 83T^{2} \) |
| 89 | \( 1 + 8.41iT - 89T^{2} \) |
| 97 | \( 1 + 2.87iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35482405790559275446168623264, −9.532772467820616936686753714020, −8.667149571878119689777037207688, −7.49285490330461728754238410171, −6.67011730253644704684763287600, −5.98404387249697065529017982145, −4.04188197041880277124225252415, −2.84512112828309356721052076148, −1.86716496974723538066563430294, −0.19012666653588818652717362596,
3.34110019554646492895408256571, 4.21188387190734249642296689289, 5.01290255646787884011718975729, 6.14199083626223679851200041030, 6.93471034886271477760671154014, 8.458340928756191364566344478084, 9.342951710753905099087750395439, 9.652819260628648970225242499842, 10.25882349590092463835416770233, 11.77955863727769696459167501464