L(s) = 1 | + (0.949 + 1.04i)2-s + 2.47i·3-s + (−0.198 + 1.99i)4-s + i·5-s + (−2.59 + 2.35i)6-s + 1.26·7-s + (−2.27 + 1.68i)8-s − 3.14·9-s + (−1.04 + 0.949i)10-s + 3.32·11-s + (−4.93 − 0.491i)12-s + 1.65·13-s + (1.19 + 1.32i)14-s − 2.47·15-s + (−3.92 − 0.788i)16-s − 6.70i·17-s + ⋯ |
L(s) = 1 | + (0.671 + 0.741i)2-s + 1.43i·3-s + (−0.0990 + 0.995i)4-s + 0.447i·5-s + (−1.06 + 0.960i)6-s + 0.476·7-s + (−0.804 + 0.594i)8-s − 1.04·9-s + (−0.331 + 0.300i)10-s + 1.00·11-s + (−1.42 − 0.141i)12-s + 0.457·13-s + (0.319 + 0.353i)14-s − 0.640·15-s + (−0.980 − 0.197i)16-s − 1.62i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 - 0.246i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.969 - 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.254734 + 2.03842i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.254734 + 2.03842i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.949 - 1.04i)T \) |
| 5 | \( 1 - iT \) |
| 23 | \( 1 + (4.74 + 0.713i)T \) |
good | 3 | \( 1 - 2.47iT - 3T^{2} \) |
| 7 | \( 1 - 1.26T + 7T^{2} \) |
| 11 | \( 1 - 3.32T + 11T^{2} \) |
| 13 | \( 1 - 1.65T + 13T^{2} \) |
| 17 | \( 1 + 6.70iT - 17T^{2} \) |
| 19 | \( 1 + 0.390T + 19T^{2} \) |
| 29 | \( 1 - 8.11T + 29T^{2} \) |
| 31 | \( 1 + 2.86iT - 31T^{2} \) |
| 37 | \( 1 + 6.44iT - 37T^{2} \) |
| 41 | \( 1 - 4.47T + 41T^{2} \) |
| 43 | \( 1 + 2.71T + 43T^{2} \) |
| 47 | \( 1 - 0.827iT - 47T^{2} \) |
| 53 | \( 1 - 8.17iT - 53T^{2} \) |
| 59 | \( 1 - 4.19iT - 59T^{2} \) |
| 61 | \( 1 - 5.01iT - 61T^{2} \) |
| 67 | \( 1 + 13.4T + 67T^{2} \) |
| 71 | \( 1 - 9.80iT - 71T^{2} \) |
| 73 | \( 1 - 3.36T + 73T^{2} \) |
| 79 | \( 1 - 15.5T + 79T^{2} \) |
| 83 | \( 1 - 1.10T + 83T^{2} \) |
| 89 | \( 1 + 8.50iT - 89T^{2} \) |
| 97 | \( 1 - 7.78iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.51762046300091376529510066335, −10.62432016410925530609697558543, −9.527892195925020304112093939295, −8.872210088116512579196447448860, −7.75928606504816423893391500552, −6.67364159188318529685338839709, −5.67601455816756861865105053983, −4.60766616106242609368552561320, −3.99440469734202914129136381235, −2.84762487184491092627172563837,
1.20666264276522374159147871729, 1.94623946377542538174025954506, 3.60725988312691672988162563631, 4.74319404292150782182713211059, 6.15905600231019505009167315517, 6.51610941970317339312413179116, 8.014662048207496638068723516831, 8.673376197795191016703137430684, 9.938893633646080026423997466832, 10.96279781143286395477831190244