L(s) = 1 | + (0.949 + 1.04i)2-s + 2.47i·3-s + (−0.198 + 1.99i)4-s + i·5-s + (−2.59 + 2.35i)6-s + 1.26·7-s + (−2.27 + 1.68i)8-s − 3.14·9-s + (−1.04 + 0.949i)10-s + 3.32·11-s + (−4.93 − 0.491i)12-s + 1.65·13-s + (1.19 + 1.32i)14-s − 2.47·15-s + (−3.92 − 0.788i)16-s − 6.70i·17-s + ⋯ |
L(s) = 1 | + (0.671 + 0.741i)2-s + 1.43i·3-s + (−0.0990 + 0.995i)4-s + 0.447i·5-s + (−1.06 + 0.960i)6-s + 0.476·7-s + (−0.804 + 0.594i)8-s − 1.04·9-s + (−0.331 + 0.300i)10-s + 1.00·11-s + (−1.42 − 0.141i)12-s + 0.457·13-s + (0.319 + 0.353i)14-s − 0.640·15-s + (−0.980 − 0.197i)16-s − 1.62i·17-s + ⋯ |
Λ(s)=(=(460s/2ΓC(s)L(s)(−0.969−0.246i)Λ(2−s)
Λ(s)=(=(460s/2ΓC(s+1/2)L(s)(−0.969−0.246i)Λ(1−s)
Degree: |
2 |
Conductor: |
460
= 22⋅5⋅23
|
Sign: |
−0.969−0.246i
|
Analytic conductor: |
3.67311 |
Root analytic conductor: |
1.91653 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ460(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 460, ( :1/2), −0.969−0.246i)
|
Particular Values
L(1) |
≈ |
0.254734+2.03842i |
L(21) |
≈ |
0.254734+2.03842i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.949−1.04i)T |
| 5 | 1−iT |
| 23 | 1+(4.74+0.713i)T |
good | 3 | 1−2.47iT−3T2 |
| 7 | 1−1.26T+7T2 |
| 11 | 1−3.32T+11T2 |
| 13 | 1−1.65T+13T2 |
| 17 | 1+6.70iT−17T2 |
| 19 | 1+0.390T+19T2 |
| 29 | 1−8.11T+29T2 |
| 31 | 1+2.86iT−31T2 |
| 37 | 1+6.44iT−37T2 |
| 41 | 1−4.47T+41T2 |
| 43 | 1+2.71T+43T2 |
| 47 | 1−0.827iT−47T2 |
| 53 | 1−8.17iT−53T2 |
| 59 | 1−4.19iT−59T2 |
| 61 | 1−5.01iT−61T2 |
| 67 | 1+13.4T+67T2 |
| 71 | 1−9.80iT−71T2 |
| 73 | 1−3.36T+73T2 |
| 79 | 1−15.5T+79T2 |
| 83 | 1−1.10T+83T2 |
| 89 | 1+8.50iT−89T2 |
| 97 | 1−7.78iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51762046300091376529510066335, −10.62432016410925530609697558543, −9.527892195925020304112093939295, −8.872210088116512579196447448860, −7.75928606504816423893391500552, −6.67364159188318529685338839709, −5.67601455816756861865105053983, −4.60766616106242609368552561320, −3.99440469734202914129136381235, −2.84762487184491092627172563837,
1.20666264276522374159147871729, 1.94623946377542538174025954506, 3.60725988312691672988162563631, 4.74319404292150782182713211059, 6.15905600231019505009167315517, 6.51610941970317339312413179116, 8.014662048207496638068723516831, 8.673376197795191016703137430684, 9.938893633646080026423997466832, 10.96279781143286395477831190244