L(s) = 1 | + 0.568·3-s − 4.73·7-s − 2.67·9-s − 0.360·11-s − 5.26·13-s − 0.370·17-s − 4.60·19-s − 2.69·21-s + 23-s − 3.22·27-s + 0.939·29-s + 9.66·31-s − 0.204·33-s − 3.26·37-s − 2.99·39-s + 5.29·41-s + 1.25·47-s + 15.4·49-s − 0.210·51-s − 10.9·53-s − 2.61·57-s − 9.66·59-s + 9.71·61-s + 12.6·63-s + 7.07·67-s + 0.568·69-s + 11.3·71-s + ⋯ |
L(s) = 1 | + 0.328·3-s − 1.79·7-s − 0.892·9-s − 0.108·11-s − 1.45·13-s − 0.0899·17-s − 1.05·19-s − 0.587·21-s + 0.208·23-s − 0.620·27-s + 0.174·29-s + 1.73·31-s − 0.0356·33-s − 0.537·37-s − 0.478·39-s + 0.827·41-s + 0.183·47-s + 2.20·49-s − 0.0295·51-s − 1.50·53-s − 0.346·57-s − 1.25·59-s + 1.24·61-s + 1.59·63-s + 0.863·67-s + 0.0684·69-s + 1.34·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7801952647\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7801952647\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 - 0.568T + 3T^{2} \) |
| 7 | \( 1 + 4.73T + 7T^{2} \) |
| 11 | \( 1 + 0.360T + 11T^{2} \) |
| 13 | \( 1 + 5.26T + 13T^{2} \) |
| 17 | \( 1 + 0.370T + 17T^{2} \) |
| 19 | \( 1 + 4.60T + 19T^{2} \) |
| 29 | \( 1 - 0.939T + 29T^{2} \) |
| 31 | \( 1 - 9.66T + 31T^{2} \) |
| 37 | \( 1 + 3.26T + 37T^{2} \) |
| 41 | \( 1 - 5.29T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 1.25T + 47T^{2} \) |
| 53 | \( 1 + 10.9T + 53T^{2} \) |
| 59 | \( 1 + 9.66T + 59T^{2} \) |
| 61 | \( 1 - 9.71T + 61T^{2} \) |
| 67 | \( 1 - 7.07T + 67T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 + 0.745T + 73T^{2} \) |
| 79 | \( 1 - 0.415T + 79T^{2} \) |
| 83 | \( 1 - 9.26T + 83T^{2} \) |
| 89 | \( 1 - 12.6T + 89T^{2} \) |
| 97 | \( 1 + 14.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.329225033524399239148356055735, −7.64892464461900249906888645593, −6.63871674237977888055650731815, −6.39296496260728340926024667936, −5.43451396749395346413976866950, −4.56469672425074860556605542155, −3.58951556727339372883228658028, −2.80347553586228778928283928185, −2.34115449272023204913543600705, −0.44418298166933433504974895875,
0.44418298166933433504974895875, 2.34115449272023204913543600705, 2.80347553586228778928283928185, 3.58951556727339372883228658028, 4.56469672425074860556605542155, 5.43451396749395346413976866950, 6.39296496260728340926024667936, 6.63871674237977888055650731815, 7.64892464461900249906888645593, 8.329225033524399239148356055735