L(s) = 1 | − 7-s − 3·9-s − 6·11-s + 2·13-s + 3·17-s − 6·19-s − 23-s + 3·29-s − 3·31-s − 37-s + 9·41-s + 8·43-s − 4·47-s − 6·49-s − 53-s + 59-s + 8·61-s + 3·63-s + 7·67-s − 5·71-s + 6·73-s + 6·77-s + 9·81-s + 11·83-s + 4·89-s − 2·91-s − 6·97-s + ⋯ |
L(s) = 1 | − 0.377·7-s − 9-s − 1.80·11-s + 0.554·13-s + 0.727·17-s − 1.37·19-s − 0.208·23-s + 0.557·29-s − 0.538·31-s − 0.164·37-s + 1.40·41-s + 1.21·43-s − 0.583·47-s − 6/7·49-s − 0.137·53-s + 0.130·59-s + 1.02·61-s + 0.377·63-s + 0.855·67-s − 0.593·71-s + 0.702·73-s + 0.683·77-s + 81-s + 1.20·83-s + 0.423·89-s − 0.209·91-s − 0.609·97-s + ⋯ |
Λ(s)=(=(4600s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4600s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.051914083 |
L(21) |
≈ |
1.051914083 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+T |
good | 3 | 1+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+6T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1+3T+pT2 |
| 37 | 1+T+pT2 |
| 41 | 1−9T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1+T+pT2 |
| 59 | 1−T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1+5T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−11T+pT2 |
| 89 | 1−4T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.131821699878571714817457957038, −7.895907093455660908259346655755, −6.81651891786475834789657050361, −5.98644200654968908267147201428, −5.52851532679300588628541511212, −4.68254936968660354804320686566, −3.65382078628700195903836662624, −2.83193822481131617809599919331, −2.16496033805434674415326045680, −0.53727497379349778489510799132,
0.53727497379349778489510799132, 2.16496033805434674415326045680, 2.83193822481131617809599919331, 3.65382078628700195903836662624, 4.68254936968660354804320686566, 5.52851532679300588628541511212, 5.98644200654968908267147201428, 6.81651891786475834789657050361, 7.895907093455660908259346655755, 8.131821699878571714817457957038