L(s) = 1 | + (0.186 − 0.386i)3-s + (0.478 + 2.09i)5-s + (1.33 + 0.641i)7-s + (1.75 + 2.20i)9-s + (−2.02 − 1.61i)11-s + (−1.55 + 1.94i)13-s + (0.899 + 0.205i)15-s + 2.05i·17-s + (−0.289 − 0.600i)19-s + (0.496 − 0.395i)21-s + (−1.34 + 5.89i)23-s + (0.340 − 0.163i)25-s + (2.43 − 0.555i)27-s + (5.10 + 1.70i)29-s + (2.83 − 0.647i)31-s + ⋯ |
L(s) = 1 | + (0.107 − 0.223i)3-s + (0.213 + 0.937i)5-s + (0.503 + 0.242i)7-s + (0.585 + 0.733i)9-s + (−0.611 − 0.487i)11-s + (−0.430 + 0.539i)13-s + (0.232 + 0.0530i)15-s + 0.499i·17-s + (−0.0663 − 0.137i)19-s + (0.108 − 0.0863i)21-s + (−0.280 + 1.22i)23-s + (0.0681 − 0.0327i)25-s + (0.468 − 0.106i)27-s + (0.948 + 0.317i)29-s + (0.509 − 0.116i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.596 - 0.802i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.596 - 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37425 + 0.690846i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37425 + 0.690846i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 29 | \( 1 + (-5.10 - 1.70i)T \) |
good | 3 | \( 1 + (-0.186 + 0.386i)T + (-1.87 - 2.34i)T^{2} \) |
| 5 | \( 1 + (-0.478 - 2.09i)T + (-4.50 + 2.16i)T^{2} \) |
| 7 | \( 1 + (-1.33 - 0.641i)T + (4.36 + 5.47i)T^{2} \) |
| 11 | \( 1 + (2.02 + 1.61i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (1.55 - 1.94i)T + (-2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 - 2.05iT - 17T^{2} \) |
| 19 | \( 1 + (0.289 + 0.600i)T + (-11.8 + 14.8i)T^{2} \) |
| 23 | \( 1 + (1.34 - 5.89i)T + (-20.7 - 9.97i)T^{2} \) |
| 31 | \( 1 + (-2.83 + 0.647i)T + (27.9 - 13.4i)T^{2} \) |
| 37 | \( 1 + (-2.53 + 2.01i)T + (8.23 - 36.0i)T^{2} \) |
| 41 | \( 1 + 6.01iT - 41T^{2} \) |
| 43 | \( 1 + (-2.70 - 0.617i)T + (38.7 + 18.6i)T^{2} \) |
| 47 | \( 1 + (-8.30 - 6.62i)T + (10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (2.47 + 10.8i)T + (-47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 + (-0.151 + 0.314i)T + (-38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + (6.06 + 7.60i)T + (-14.9 + 65.3i)T^{2} \) |
| 71 | \( 1 + (1.57 - 1.97i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (-4.10 - 0.937i)T + (65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + (-4.21 + 3.35i)T + (17.5 - 77.0i)T^{2} \) |
| 83 | \( 1 + (7.37 - 3.55i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (-0.477 + 0.109i)T + (80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 + (1.92 + 3.99i)T + (-60.4 + 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97286246706472074430269177954, −10.48395929314594763786800725215, −9.484519074831811551734109443456, −8.276316126920630314518216719271, −7.53906936474832081720305317109, −6.64946522314782897327199422720, −5.54559931189942773325961372334, −4.44305822355128969355693103591, −2.95027085289615429178139260314, −1.87346378385879319836862778137,
1.03097704656593494295862094795, 2.72330140501008922941198282442, 4.39707623157990257867474568403, 4.88073362466384477139287000866, 6.18053766490030872431942925281, 7.36831255734812304391696604937, 8.251460567921053834327821427158, 9.159982848146591571784807020421, 10.00449416131714486511383482351, 10.69419471517765078591680301852