L(s) = 1 | + (0.186 − 0.386i)3-s + (0.478 + 2.09i)5-s + (1.33 + 0.641i)7-s + (1.75 + 2.20i)9-s + (−2.02 − 1.61i)11-s + (−1.55 + 1.94i)13-s + (0.899 + 0.205i)15-s + 2.05i·17-s + (−0.289 − 0.600i)19-s + (0.496 − 0.395i)21-s + (−1.34 + 5.89i)23-s + (0.340 − 0.163i)25-s + (2.43 − 0.555i)27-s + (5.10 + 1.70i)29-s + (2.83 − 0.647i)31-s + ⋯ |
L(s) = 1 | + (0.107 − 0.223i)3-s + (0.213 + 0.937i)5-s + (0.503 + 0.242i)7-s + (0.585 + 0.733i)9-s + (−0.611 − 0.487i)11-s + (−0.430 + 0.539i)13-s + (0.232 + 0.0530i)15-s + 0.499i·17-s + (−0.0663 − 0.137i)19-s + (0.108 − 0.0863i)21-s + (−0.280 + 1.22i)23-s + (0.0681 − 0.0327i)25-s + (0.468 − 0.106i)27-s + (0.948 + 0.317i)29-s + (0.509 − 0.116i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.596−0.802i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(0.596−0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.596−0.802i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(225,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), 0.596−0.802i)
|
Particular Values
L(1) |
≈ |
1.37425+0.690846i |
L(21) |
≈ |
1.37425+0.690846i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(−5.10−1.70i)T |
good | 3 | 1+(−0.186+0.386i)T+(−1.87−2.34i)T2 |
| 5 | 1+(−0.478−2.09i)T+(−4.50+2.16i)T2 |
| 7 | 1+(−1.33−0.641i)T+(4.36+5.47i)T2 |
| 11 | 1+(2.02+1.61i)T+(2.44+10.7i)T2 |
| 13 | 1+(1.55−1.94i)T+(−2.89−12.6i)T2 |
| 17 | 1−2.05iT−17T2 |
| 19 | 1+(0.289+0.600i)T+(−11.8+14.8i)T2 |
| 23 | 1+(1.34−5.89i)T+(−20.7−9.97i)T2 |
| 31 | 1+(−2.83+0.647i)T+(27.9−13.4i)T2 |
| 37 | 1+(−2.53+2.01i)T+(8.23−36.0i)T2 |
| 41 | 1+6.01iT−41T2 |
| 43 | 1+(−2.70−0.617i)T+(38.7+18.6i)T2 |
| 47 | 1+(−8.30−6.62i)T+(10.4+45.8i)T2 |
| 53 | 1+(2.47+10.8i)T+(−47.7+22.9i)T2 |
| 59 | 1+12.2T+59T2 |
| 61 | 1+(−0.151+0.314i)T+(−38.0−47.6i)T2 |
| 67 | 1+(6.06+7.60i)T+(−14.9+65.3i)T2 |
| 71 | 1+(1.57−1.97i)T+(−15.7−69.2i)T2 |
| 73 | 1+(−4.10−0.937i)T+(65.7+31.6i)T2 |
| 79 | 1+(−4.21+3.35i)T+(17.5−77.0i)T2 |
| 83 | 1+(7.37−3.55i)T+(51.7−64.8i)T2 |
| 89 | 1+(−0.477+0.109i)T+(80.1−38.6i)T2 |
| 97 | 1+(1.92+3.99i)T+(−60.4+75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97286246706472074430269177954, −10.48395929314594763786800725215, −9.484519074831811551734109443456, −8.276316126920630314518216719271, −7.53906936474832081720305317109, −6.64946522314782897327199422720, −5.54559931189942773325961372334, −4.44305822355128969355693103591, −2.95027085289615429178139260314, −1.87346378385879319836862778137,
1.03097704656593494295862094795, 2.72330140501008922941198282442, 4.39707623157990257867474568403, 4.88073362466384477139287000866, 6.18053766490030872431942925281, 7.36831255734812304391696604937, 8.251460567921053834327821427158, 9.159982848146591571784807020421, 10.00449416131714486511383482351, 10.69419471517765078591680301852