L(s) = 1 | + (−2.64 + 0.603i)3-s + (−2.76 − 3.47i)5-s + (−0.416 − 1.82i)7-s + (3.92 − 1.88i)9-s + (−1.37 + 2.86i)11-s + (1.39 + 0.673i)13-s + (9.41 + 7.50i)15-s + 4.31i·17-s + (−2.42 − 0.554i)19-s + (2.20 + 4.57i)21-s + (3.20 − 4.02i)23-s + (−3.27 + 14.3i)25-s + (−2.86 + 2.28i)27-s + (−3.58 − 4.01i)29-s + (−4.02 + 3.20i)31-s + ⋯ |
L(s) = 1 | + (−1.52 + 0.348i)3-s + (−1.23 − 1.55i)5-s + (−0.157 − 0.690i)7-s + (1.30 − 0.629i)9-s + (−0.415 + 0.863i)11-s + (0.387 + 0.186i)13-s + (2.43 + 1.93i)15-s + 1.04i·17-s + (−0.557 − 0.127i)19-s + (0.480 + 0.998i)21-s + (0.669 − 0.839i)23-s + (−0.655 + 2.87i)25-s + (−0.551 + 0.440i)27-s + (−0.665 − 0.746i)29-s + (−0.722 + 0.575i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.0281−0.999i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(0.0281−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.0281−0.999i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(353,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), 0.0281−0.999i)
|
Particular Values
L(1) |
≈ |
0.181114+0.176086i |
L(21) |
≈ |
0.181114+0.176086i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(3.58+4.01i)T |
good | 3 | 1+(2.64−0.603i)T+(2.70−1.30i)T2 |
| 5 | 1+(2.76+3.47i)T+(−1.11+4.87i)T2 |
| 7 | 1+(0.416+1.82i)T+(−6.30+3.03i)T2 |
| 11 | 1+(1.37−2.86i)T+(−6.85−8.60i)T2 |
| 13 | 1+(−1.39−0.673i)T+(8.10+10.1i)T2 |
| 17 | 1−4.31iT−17T2 |
| 19 | 1+(2.42+0.554i)T+(17.1+8.24i)T2 |
| 23 | 1+(−3.20+4.02i)T+(−5.11−22.4i)T2 |
| 31 | 1+(4.02−3.20i)T+(6.89−30.2i)T2 |
| 37 | 1+(−4.49−9.32i)T+(−23.0+28.9i)T2 |
| 41 | 1−0.634iT−41T2 |
| 43 | 1+(−6.36−5.07i)T+(9.56+41.9i)T2 |
| 47 | 1+(−0.615+1.27i)T+(−29.3−36.7i)T2 |
| 53 | 1+(−1.81−2.27i)T+(−11.7+51.6i)T2 |
| 59 | 1+1.72T+59T2 |
| 61 | 1+(4.97−1.13i)T+(54.9−26.4i)T2 |
| 67 | 1+(−9.62+4.63i)T+(41.7−52.3i)T2 |
| 71 | 1+(9.23+4.44i)T+(44.2+55.5i)T2 |
| 73 | 1+(2.99+2.38i)T+(16.2+71.1i)T2 |
| 79 | 1+(−6.04−12.5i)T+(−49.2+61.7i)T2 |
| 83 | 1+(2.70−11.8i)T+(−74.7−36.0i)T2 |
| 89 | 1+(1.99−1.59i)T+(19.8−86.7i)T2 |
| 97 | 1+(4.10+0.937i)T+(87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.22030888283354360026279028352, −10.67329231662761304314224696524, −9.599898785873754061375354815290, −8.505936185410698297435576586006, −7.60545314868082586091742748954, −6.53051853684108800981000836175, −5.35817130536667835211416316463, −4.49500205117024537531609442254, −4.03609565320221315102311228551, −1.10622025948825749656510278929,
0.22971700805317279590957850962, 2.74442721685078068706152809363, 3.89757720792399578515126337653, 5.44057002329328501105085731341, 6.10515292076300843200780259168, 7.11521009979473403258563180801, 7.64337705640900057984286988316, 9.026365578145629254109520087179, 10.52188279715541001184358254705, 11.05356378744306404137890423417