L(s) = 1 | + (−2.64 + 0.603i)3-s + (−2.76 − 3.47i)5-s + (−0.416 − 1.82i)7-s + (3.92 − 1.88i)9-s + (−1.37 + 2.86i)11-s + (1.39 + 0.673i)13-s + (9.41 + 7.50i)15-s + 4.31i·17-s + (−2.42 − 0.554i)19-s + (2.20 + 4.57i)21-s + (3.20 − 4.02i)23-s + (−3.27 + 14.3i)25-s + (−2.86 + 2.28i)27-s + (−3.58 − 4.01i)29-s + (−4.02 + 3.20i)31-s + ⋯ |
L(s) = 1 | + (−1.52 + 0.348i)3-s + (−1.23 − 1.55i)5-s + (−0.157 − 0.690i)7-s + (1.30 − 0.629i)9-s + (−0.415 + 0.863i)11-s + (0.387 + 0.186i)13-s + (2.43 + 1.93i)15-s + 1.04i·17-s + (−0.557 − 0.127i)19-s + (0.480 + 0.998i)21-s + (0.669 − 0.839i)23-s + (−0.655 + 2.87i)25-s + (−0.551 + 0.440i)27-s + (−0.665 − 0.746i)29-s + (−0.722 + 0.575i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0281 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0281 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.181114 + 0.176086i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.181114 + 0.176086i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 29 | \( 1 + (3.58 + 4.01i)T \) |
good | 3 | \( 1 + (2.64 - 0.603i)T + (2.70 - 1.30i)T^{2} \) |
| 5 | \( 1 + (2.76 + 3.47i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (0.416 + 1.82i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (1.37 - 2.86i)T + (-6.85 - 8.60i)T^{2} \) |
| 13 | \( 1 + (-1.39 - 0.673i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 - 4.31iT - 17T^{2} \) |
| 19 | \( 1 + (2.42 + 0.554i)T + (17.1 + 8.24i)T^{2} \) |
| 23 | \( 1 + (-3.20 + 4.02i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (4.02 - 3.20i)T + (6.89 - 30.2i)T^{2} \) |
| 37 | \( 1 + (-4.49 - 9.32i)T + (-23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 - 0.634iT - 41T^{2} \) |
| 43 | \( 1 + (-6.36 - 5.07i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-0.615 + 1.27i)T + (-29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (-1.81 - 2.27i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 + 1.72T + 59T^{2} \) |
| 61 | \( 1 + (4.97 - 1.13i)T + (54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + (-9.62 + 4.63i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (9.23 + 4.44i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (2.99 + 2.38i)T + (16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 + (-6.04 - 12.5i)T + (-49.2 + 61.7i)T^{2} \) |
| 83 | \( 1 + (2.70 - 11.8i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (1.99 - 1.59i)T + (19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 + (4.10 + 0.937i)T + (87.3 + 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22030888283354360026279028352, −10.67329231662761304314224696524, −9.599898785873754061375354815290, −8.505936185410698297435576586006, −7.60545314868082586091742748954, −6.53051853684108800981000836175, −5.35817130536667835211416316463, −4.49500205117024537531609442254, −4.03609565320221315102311228551, −1.10622025948825749656510278929,
0.22971700805317279590957850962, 2.74442721685078068706152809363, 3.89757720792399578515126337653, 5.44057002329328501105085731341, 6.10515292076300843200780259168, 7.11521009979473403258563180801, 7.64337705640900057984286988316, 9.026365578145629254109520087179, 10.52188279715541001184358254705, 11.05356378744306404137890423417