Properties

Label 2-4655-1.1-c1-0-90
Degree $2$
Conductor $4655$
Sign $1$
Analytic cond. $37.1703$
Root an. cond. $6.09675$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·2-s − 0.704·3-s + 1.50·4-s − 5-s + 1.31·6-s + 0.932·8-s − 2.50·9-s + 1.87·10-s + 4.51·11-s − 1.05·12-s + 6.39·13-s + 0.704·15-s − 4.74·16-s + 1.66·17-s + 4.68·18-s + 19-s − 1.50·20-s − 8.44·22-s + 4.99·23-s − 0.657·24-s + 25-s − 11.9·26-s + 3.87·27-s + 3.75·29-s − 1.31·30-s + 8.54·31-s + 7.02·32-s + ⋯
L(s)  = 1  − 1.32·2-s − 0.406·3-s + 0.750·4-s − 0.447·5-s + 0.538·6-s + 0.329·8-s − 0.834·9-s + 0.591·10-s + 1.36·11-s − 0.305·12-s + 1.77·13-s + 0.181·15-s − 1.18·16-s + 0.402·17-s + 1.10·18-s + 0.229·19-s − 0.335·20-s − 1.80·22-s + 1.04·23-s − 0.134·24-s + 0.200·25-s − 2.34·26-s + 0.746·27-s + 0.697·29-s − 0.240·30-s + 1.53·31-s + 1.24·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4655 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4655 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4655\)    =    \(5 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(37.1703\)
Root analytic conductor: \(6.09675\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4655,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9428552410\)
\(L(\frac12)\) \(\approx\) \(0.9428552410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 1.87T + 2T^{2} \)
3 \( 1 + 0.704T + 3T^{2} \)
11 \( 1 - 4.51T + 11T^{2} \)
13 \( 1 - 6.39T + 13T^{2} \)
17 \( 1 - 1.66T + 17T^{2} \)
23 \( 1 - 4.99T + 23T^{2} \)
29 \( 1 - 3.75T + 29T^{2} \)
31 \( 1 - 8.54T + 31T^{2} \)
37 \( 1 - 6.01T + 37T^{2} \)
41 \( 1 - 7.43T + 41T^{2} \)
43 \( 1 + 8.44T + 43T^{2} \)
47 \( 1 + 4.68T + 47T^{2} \)
53 \( 1 - 7.70T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 13.6T + 61T^{2} \)
67 \( 1 - 8.22T + 67T^{2} \)
71 \( 1 - 9.81T + 71T^{2} \)
73 \( 1 + 5.55T + 73T^{2} \)
79 \( 1 - 4.47T + 79T^{2} \)
83 \( 1 + 3.31T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 - 0.178T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.326354898135839225613054229966, −7.998700198133921500351735142331, −6.71347930461919421469648955218, −6.55183124889918177650920187535, −5.55656416679619465397168397357, −4.52634568390304830597618875927, −3.73172435503476141224232275427, −2.77491768263216037614613788892, −1.26329159326215093760081653010, −0.825478197685397915856751775695, 0.825478197685397915856751775695, 1.26329159326215093760081653010, 2.77491768263216037614613788892, 3.73172435503476141224232275427, 4.52634568390304830597618875927, 5.55656416679619465397168397357, 6.55183124889918177650920187535, 6.71347930461919421469648955218, 7.998700198133921500351735142331, 8.326354898135839225613054229966

Graph of the $Z$-function along the critical line