L(s) = 1 | + 1.09·2-s + 0.170·3-s − 0.796·4-s + 5-s + 0.187·6-s − 3.06·8-s − 2.97·9-s + 1.09·10-s − 5.62·11-s − 0.135·12-s + 6.22·13-s + 0.170·15-s − 1.77·16-s + 0.620·17-s − 3.25·18-s − 19-s − 0.796·20-s − 6.16·22-s − 3.46·23-s − 0.523·24-s + 25-s + 6.83·26-s − 1.01·27-s + 1.28·29-s + 0.187·30-s + 0.00111·31-s + 4.19·32-s + ⋯ |
L(s) = 1 | + 0.775·2-s + 0.0985·3-s − 0.398·4-s + 0.447·5-s + 0.0764·6-s − 1.08·8-s − 0.990·9-s + 0.346·10-s − 1.69·11-s − 0.0392·12-s + 1.72·13-s + 0.0440·15-s − 0.443·16-s + 0.150·17-s − 0.768·18-s − 0.229·19-s − 0.178·20-s − 1.31·22-s − 0.721·23-s − 0.106·24-s + 0.200·25-s + 1.34·26-s − 0.196·27-s + 0.238·29-s + 0.0341·30-s + 0.000199·31-s + 0.740·32-s + ⋯ |
Λ(s)=(=(4655s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4655s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.030257056 |
L(21) |
≈ |
2.030257056 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 7 | 1 |
| 19 | 1+T |
good | 2 | 1−1.09T+2T2 |
| 3 | 1−0.170T+3T2 |
| 11 | 1+5.62T+11T2 |
| 13 | 1−6.22T+13T2 |
| 17 | 1−0.620T+17T2 |
| 23 | 1+3.46T+23T2 |
| 29 | 1−1.28T+29T2 |
| 31 | 1−0.00111T+31T2 |
| 37 | 1−8.59T+37T2 |
| 41 | 1−11.9T+41T2 |
| 43 | 1−2.87T+43T2 |
| 47 | 1+7.17T+47T2 |
| 53 | 1+0.0309T+53T2 |
| 59 | 1−2.44T+59T2 |
| 61 | 1+6.52T+61T2 |
| 67 | 1−9.19T+67T2 |
| 71 | 1−10.0T+71T2 |
| 73 | 1−3.20T+73T2 |
| 79 | 1+11.0T+79T2 |
| 83 | 1−13.3T+83T2 |
| 89 | 1−6.43T+89T2 |
| 97 | 1−10.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.127182027048399542613013826557, −7.952659987242963936593980760358, −6.44253073746498780455147622270, −5.90332907609704335679197355850, −5.48365467182043022271334753619, −4.64081789875964345394495428610, −3.77214850821093148014321227695, −2.98422454209518442158052958056, −2.29485666211271276528479784846, −0.67973490523716963338330891277,
0.67973490523716963338330891277, 2.29485666211271276528479784846, 2.98422454209518442158052958056, 3.77214850821093148014321227695, 4.64081789875964345394495428610, 5.48365467182043022271334753619, 5.90332907609704335679197355850, 6.44253073746498780455147622270, 7.952659987242963936593980760358, 8.127182027048399542613013826557