Properties

Label 2-4655-1.1-c1-0-64
Degree $2$
Conductor $4655$
Sign $1$
Analytic cond. $37.1703$
Root an. cond. $6.09675$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.09·2-s + 0.170·3-s − 0.796·4-s + 5-s + 0.187·6-s − 3.06·8-s − 2.97·9-s + 1.09·10-s − 5.62·11-s − 0.135·12-s + 6.22·13-s + 0.170·15-s − 1.77·16-s + 0.620·17-s − 3.25·18-s − 19-s − 0.796·20-s − 6.16·22-s − 3.46·23-s − 0.523·24-s + 25-s + 6.83·26-s − 1.01·27-s + 1.28·29-s + 0.187·30-s + 0.00111·31-s + 4.19·32-s + ⋯
L(s)  = 1  + 0.775·2-s + 0.0985·3-s − 0.398·4-s + 0.447·5-s + 0.0764·6-s − 1.08·8-s − 0.990·9-s + 0.346·10-s − 1.69·11-s − 0.0392·12-s + 1.72·13-s + 0.0440·15-s − 0.443·16-s + 0.150·17-s − 0.768·18-s − 0.229·19-s − 0.178·20-s − 1.31·22-s − 0.721·23-s − 0.106·24-s + 0.200·25-s + 1.34·26-s − 0.196·27-s + 0.238·29-s + 0.0341·30-s + 0.000199·31-s + 0.740·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4655 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4655 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4655\)    =    \(5 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(37.1703\)
Root analytic conductor: \(6.09675\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4655,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.030257056\)
\(L(\frac12)\) \(\approx\) \(2.030257056\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 1.09T + 2T^{2} \)
3 \( 1 - 0.170T + 3T^{2} \)
11 \( 1 + 5.62T + 11T^{2} \)
13 \( 1 - 6.22T + 13T^{2} \)
17 \( 1 - 0.620T + 17T^{2} \)
23 \( 1 + 3.46T + 23T^{2} \)
29 \( 1 - 1.28T + 29T^{2} \)
31 \( 1 - 0.00111T + 31T^{2} \)
37 \( 1 - 8.59T + 37T^{2} \)
41 \( 1 - 11.9T + 41T^{2} \)
43 \( 1 - 2.87T + 43T^{2} \)
47 \( 1 + 7.17T + 47T^{2} \)
53 \( 1 + 0.0309T + 53T^{2} \)
59 \( 1 - 2.44T + 59T^{2} \)
61 \( 1 + 6.52T + 61T^{2} \)
67 \( 1 - 9.19T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 3.20T + 73T^{2} \)
79 \( 1 + 11.0T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 - 6.43T + 89T^{2} \)
97 \( 1 - 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.127182027048399542613013826557, −7.952659987242963936593980760358, −6.44253073746498780455147622270, −5.90332907609704335679197355850, −5.48365467182043022271334753619, −4.64081789875964345394495428610, −3.77214850821093148014321227695, −2.98422454209518442158052958056, −2.29485666211271276528479784846, −0.67973490523716963338330891277, 0.67973490523716963338330891277, 2.29485666211271276528479784846, 2.98422454209518442158052958056, 3.77214850821093148014321227695, 4.64081789875964345394495428610, 5.48365467182043022271334753619, 5.90332907609704335679197355850, 6.44253073746498780455147622270, 7.952659987242963936593980760358, 8.127182027048399542613013826557

Graph of the $Z$-function along the critical line