L(s) = 1 | + (0.180 + 1.72i)3-s + (0.0380 − 0.0658i)5-s − 3.72·7-s + (−2.93 + 0.620i)9-s + (0.561 − 0.972i)11-s + (−2.60 + 2.49i)13-s + (0.120 + 0.0536i)15-s + (−4.03 + 6.99i)17-s + (1.22 − 2.12i)19-s + (−0.670 − 6.41i)21-s − 6.81·23-s + (2.49 + 4.32i)25-s + (−1.59 − 4.94i)27-s + (1.52 − 2.64i)29-s + (4.54 − 7.86i)31-s + ⋯ |
L(s) = 1 | + (0.103 + 0.994i)3-s + (0.0170 − 0.0294i)5-s − 1.40·7-s + (−0.978 + 0.206i)9-s + (0.169 − 0.293i)11-s + (−0.722 + 0.691i)13-s + (0.0310 + 0.0138i)15-s + (−0.978 + 1.69i)17-s + (0.281 − 0.487i)19-s + (−0.146 − 1.40i)21-s − 1.42·23-s + (0.499 + 0.865i)25-s + (−0.307 − 0.951i)27-s + (0.283 − 0.490i)29-s + (0.815 − 1.41i)31-s + ⋯ |
Λ(s)=(=(468s/2ΓC(s)L(s)(−0.987−0.155i)Λ(2−s)
Λ(s)=(=(468s/2ΓC(s+1/2)L(s)(−0.987−0.155i)Λ(1−s)
Degree: |
2 |
Conductor: |
468
= 22⋅32⋅13
|
Sign: |
−0.987−0.155i
|
Analytic conductor: |
3.73699 |
Root analytic conductor: |
1.93313 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ468(445,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 468, ( :1/2), −0.987−0.155i)
|
Particular Values
L(1) |
≈ |
0.0464105+0.592199i |
L(21) |
≈ |
0.0464105+0.592199i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.180−1.72i)T |
| 13 | 1+(2.60−2.49i)T |
good | 5 | 1+(−0.0380+0.0658i)T+(−2.5−4.33i)T2 |
| 7 | 1+3.72T+7T2 |
| 11 | 1+(−0.561+0.972i)T+(−5.5−9.52i)T2 |
| 17 | 1+(4.03−6.99i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.22+2.12i)T+(−9.5−16.4i)T2 |
| 23 | 1+6.81T+23T2 |
| 29 | 1+(−1.52+2.64i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−4.54+7.86i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4.10−7.11i)T+(−18.5+32.0i)T2 |
| 41 | 1+10.5T+41T2 |
| 43 | 1−6.33T+43T2 |
| 47 | 1+(−1.74−3.02i)T+(−23.5+40.7i)T2 |
| 53 | 1+5.55T+53T2 |
| 59 | 1+(−6.54−11.3i)T+(−29.5+51.0i)T2 |
| 61 | 1+3.28T+61T2 |
| 67 | 1+11.2T+67T2 |
| 71 | 1+(−1.58+2.73i)T+(−35.5−61.4i)T2 |
| 73 | 1−7.39T+73T2 |
| 79 | 1+(−5.40−9.35i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−3.01−5.21i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−6.31−10.9i)T+(−44.5+77.0i)T2 |
| 97 | 1−10.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35403753014243765529286202912, −10.33913709256668017834649039129, −9.705262032090401265656517748553, −9.023990622642246046818020539855, −8.031836521261380168007982582816, −6.56033731010261636243383244122, −5.96503710730599944547396287662, −4.51614702763014564281116320946, −3.71353453952593091213503857827, −2.51056265409611750285476680158,
0.33294979670938147981893926902, 2.37624173872002100188532951167, 3.29147428284938417817348088839, 4.95775186942399333626307144152, 6.22006752714344719846051922359, 6.85781022720057925867886336471, 7.68800695698570038667823787968, 8.818062231489884903103341473749, 9.671456187475595054711274136653, 10.49898814525698666750655659364