L(s) = 1 | + (0.583 + 1.63i)3-s + (−1.31 + 2.27i)5-s + 3.59·7-s + (−2.31 + 1.90i)9-s + (−2.37 + 4.11i)11-s + (−3.08 − 1.87i)13-s + (−4.47 − 0.813i)15-s + (0.733 − 1.27i)17-s + (2.78 − 4.82i)19-s + (2.09 + 5.85i)21-s + 3.41·23-s + (−0.942 − 1.63i)25-s + (−4.45 − 2.66i)27-s + (−1.91 + 3.32i)29-s + (−4.73 + 8.20i)31-s + ⋯ |
L(s) = 1 | + (0.336 + 0.941i)3-s + (−0.586 + 1.01i)5-s + 1.35·7-s + (−0.772 + 0.634i)9-s + (−0.716 + 1.24i)11-s + (−0.854 − 0.519i)13-s + (−1.15 − 0.209i)15-s + (0.177 − 0.308i)17-s + (0.639 − 1.10i)19-s + (0.457 + 1.27i)21-s + 0.711·23-s + (−0.188 − 0.326i)25-s + (−0.857 − 0.513i)27-s + (−0.356 + 0.617i)29-s + (−0.850 + 1.47i)31-s + ⋯ |
Λ(s)=(=(468s/2ΓC(s)L(s)(−0.551−0.834i)Λ(2−s)
Λ(s)=(=(468s/2ΓC(s+1/2)L(s)(−0.551−0.834i)Λ(1−s)
Degree: |
2 |
Conductor: |
468
= 22⋅32⋅13
|
Sign: |
−0.551−0.834i
|
Analytic conductor: |
3.73699 |
Root analytic conductor: |
1.93313 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ468(445,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 468, ( :1/2), −0.551−0.834i)
|
Particular Values
L(1) |
≈ |
0.658864+1.22487i |
L(21) |
≈ |
0.658864+1.22487i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.583−1.63i)T |
| 13 | 1+(3.08+1.87i)T |
good | 5 | 1+(1.31−2.27i)T+(−2.5−4.33i)T2 |
| 7 | 1−3.59T+7T2 |
| 11 | 1+(2.37−4.11i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.733+1.27i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.78+4.82i)T+(−9.5−16.4i)T2 |
| 23 | 1−3.41T+23T2 |
| 29 | 1+(1.91−3.32i)T+(−14.5−25.1i)T2 |
| 31 | 1+(4.73−8.20i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−2.14−3.71i)T+(−18.5+32.0i)T2 |
| 41 | 1−7.34T+41T2 |
| 43 | 1+2.56T+43T2 |
| 47 | 1+(3.88+6.72i)T+(−23.5+40.7i)T2 |
| 53 | 1−1.77T+53T2 |
| 59 | 1+(−4.39−7.61i)T+(−29.5+51.0i)T2 |
| 61 | 1−6.37T+61T2 |
| 67 | 1−4.24T+67T2 |
| 71 | 1+(−4.76+8.25i)T+(−35.5−61.4i)T2 |
| 73 | 1−11.1T+73T2 |
| 79 | 1+(5.06+8.77i)T+(−39.5+68.4i)T2 |
| 83 | 1+(4.51+7.82i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−6.36−11.0i)T+(−44.5+77.0i)T2 |
| 97 | 1−12.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11256873685278709790483578110, −10.55815649132971929796167539879, −9.702741807337137379612308704994, −8.639298563046091521517835374814, −7.53449427390448780721486922209, −7.20533911809244551103790573617, −5.06979987162710466318783328128, −4.88455212214592269913145237576, −3.35905582766403615311797268895, −2.36534842579509694951653473628,
0.850038336254408669699253402061, 2.21500138421751393530955562503, 3.82189424461650206549215241703, 5.07496096719836766670401671952, 5.89218066117836590522277585419, 7.50386952929960349836789935562, 7.976662942170808719709059286513, 8.566342684199211061495013977796, 9.589660194112179952111182937792, 11.23393044115097097152678962891