Properties

Label 2-468-117.94-c1-0-5
Degree $2$
Conductor $468$
Sign $-0.551 - 0.834i$
Analytic cond. $3.73699$
Root an. cond. $1.93313$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.583 + 1.63i)3-s + (−1.31 + 2.27i)5-s + 3.59·7-s + (−2.31 + 1.90i)9-s + (−2.37 + 4.11i)11-s + (−3.08 − 1.87i)13-s + (−4.47 − 0.813i)15-s + (0.733 − 1.27i)17-s + (2.78 − 4.82i)19-s + (2.09 + 5.85i)21-s + 3.41·23-s + (−0.942 − 1.63i)25-s + (−4.45 − 2.66i)27-s + (−1.91 + 3.32i)29-s + (−4.73 + 8.20i)31-s + ⋯
L(s)  = 1  + (0.336 + 0.941i)3-s + (−0.586 + 1.01i)5-s + 1.35·7-s + (−0.772 + 0.634i)9-s + (−0.716 + 1.24i)11-s + (−0.854 − 0.519i)13-s + (−1.15 − 0.209i)15-s + (0.177 − 0.308i)17-s + (0.639 − 1.10i)19-s + (0.457 + 1.27i)21-s + 0.711·23-s + (−0.188 − 0.326i)25-s + (−0.857 − 0.513i)27-s + (−0.356 + 0.617i)29-s + (−0.850 + 1.47i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.551 - 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.551 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(468\)    =    \(2^{2} \cdot 3^{2} \cdot 13\)
Sign: $-0.551 - 0.834i$
Analytic conductor: \(3.73699\)
Root analytic conductor: \(1.93313\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{468} (445, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 468,\ (\ :1/2),\ -0.551 - 0.834i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.658864 + 1.22487i\)
\(L(\frac12)\) \(\approx\) \(0.658864 + 1.22487i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.583 - 1.63i)T \)
13 \( 1 + (3.08 + 1.87i)T \)
good5 \( 1 + (1.31 - 2.27i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 - 3.59T + 7T^{2} \)
11 \( 1 + (2.37 - 4.11i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-0.733 + 1.27i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.78 + 4.82i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 - 3.41T + 23T^{2} \)
29 \( 1 + (1.91 - 3.32i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (4.73 - 8.20i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.14 - 3.71i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 7.34T + 41T^{2} \)
43 \( 1 + 2.56T + 43T^{2} \)
47 \( 1 + (3.88 + 6.72i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 - 1.77T + 53T^{2} \)
59 \( 1 + (-4.39 - 7.61i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 - 6.37T + 61T^{2} \)
67 \( 1 - 4.24T + 67T^{2} \)
71 \( 1 + (-4.76 + 8.25i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 11.1T + 73T^{2} \)
79 \( 1 + (5.06 + 8.77i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (4.51 + 7.82i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-6.36 - 11.0i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11256873685278709790483578110, −10.55815649132971929796167539879, −9.702741807337137379612308704994, −8.639298563046091521517835374814, −7.53449427390448780721486922209, −7.20533911809244551103790573617, −5.06979987162710466318783328128, −4.88455212214592269913145237576, −3.35905582766403615311797268895, −2.36534842579509694951653473628, 0.850038336254408669699253402061, 2.21500138421751393530955562503, 3.82189424461650206549215241703, 5.07496096719836766670401671952, 5.89218066117836590522277585419, 7.50386952929960349836789935562, 7.976662942170808719709059286513, 8.566342684199211061495013977796, 9.589660194112179952111182937792, 11.23393044115097097152678962891

Graph of the $Z$-function along the critical line